Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (2): 35-40    DOI: 10.11925/infotech.2096-3467.2017.02.05
Orginal Article Current Issue | Archive | Adv Search |
Constructing Dynamic Social Tag Cloud for User Interests
Mengyao Xie,Xuwei Pan()
School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou 310018, China
Download: PDF(534 KB)   HTML ( 26
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Social tags can be used for the recommendation and navigation sections of information retrieval systems. This paper proposes a method to construct a dynamic user tag cloud based on the temporal evolution to reveal the changes of user interests. [Methods] We established the tags’ dynamic weights with the forgetting and strengthening characteristics of memory in psychology. Thus, the dynamic user tag cloud reflect user’s changing focus. [Results] Compared with the existing ones, the proposed algorithm could effectively sort the tags, and then make accurate predictions or recommendations. [Limitations] The proposed method performed well over long period of time because user’s interests do not change significantly in a short period of time. [Conclusions] The proposed algorithm could effectively identify user’s interests and then improve the personalized services.

Key wordsSocial Tagging      Tag      User Interests      Dynamic Tag Cloud     
Received: 12 October 2016      Published: 27 March 2017
About author:: Wu Zhenxin,Li Chunwang,Guo Jiayi

Cite this article:

Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests. Data Analysis and Knowledge Discovery, 2017, 1(2): 35-40.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.02.05     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I2/35

[1] 魏建良, 朱庆华. 基于社会化标注的个性化推荐研究进展[J]. 情报学报, 2010, 29(4): 625-633.
[1] (Wei Jianliang, Zhu Qinghua.Advances in Personalized Information Recommendation Based on Social Tagging[J]. Journal of the China Society for Scientific and Technical Information, 2010, 29(4): 625-633.)
[2] 夏瑀, 葛佳琦, 马秀, 等. 基于Wikidata和标签云的搜索算法研究[J]. 软件导刊, 2016, 15(8): 42-46.
[2] (Xia Yu, Ge Jiaqi, Ma Xiu, et al.Research on Searching Algorithm Based on Wikidata and Tag Cloud[J]. Software Guide, 2016, 15(8): 42-46.)
[3] 曾子明, 张振. 社会化标注系统中基于社区标签云的个性化推荐研究[J]. 情报杂志, 2011, 30(10): 128-133.
[3] (Zeng Ziming, Zhang Zhen.A Personalized Recommendation Approach Based on Community Tag Cloud in Social Tagging System[J]. Journal of Intelligence, 2011, 30(10): 128-133.)
[4] 毕强, 周姗姗, 马志强, 等. 面向知识关联的标签云优化机理研究[J]. 现代图书情报技术, 2014(5): 33-40.
[4] (Bi Qiang, Zhou Shanshan, Ma Zhiqiang, et al.Study on Optimization Mechanism of Tag Cloud for Knowledge Relation[J]. New Technology of Library and Information Service, 2014(5): 33-40.)
[5] Hassan-Montero Y, Herrero-Solana V.Improving Tag-Clouds as Visual Information Retrieval Interfaces[C]//Proceedings of International Conference on Multidisciplinary Information Sciences and Technologies, Merída, Spain.2006.
[6] Millen D R, Feinberg J.Using Social Tagging to Improve Social Navigation [OL]. [2016-09-30]..
[7] 于洪涛, 崔瑞飞, 董芹芹. 基于遗忘曲线的微博用户兴趣模型[J]. 计算机工程与设计, 2014, 35(10): 3367-3372, 3379.
[7] (Yu Hongtao, Cui Ruifei, Dong Qinqin.Micro-blog User Interest Model Based on Forgetting Curve[J]. Computer Engineering and Design, 2014, 35(10): 3367-3372, 3379.)
[8] 印桂生, 崔晓晖, 马志强. 遗忘曲线的协同过滤推荐模型[J]. 哈尔滨工程大学学报, 2012, 33(1): 85-90.
[8] (Yin Guisheng, Cui Xiaohui, Ma Zhiqiang.Forgetting Curve-based Collaborative Filtering Recommendation Model[J]. Journal of Harbin Engineering University, 2012, 33(1): 85-90.)
[9] 赵开慧. 基于社会化标注的个性化信息推荐方法研究[J]. 情报科学, 2015, 33(6): 39-42.
[9] (Zhao Kaihui.Recommendation Method of Personalized Information Based on Socialized Tagging[J]. Information Science, 2015, 33(6): 39-42.)
[1] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[2] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[4] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[5] Huixiang Xiong,Jiaxin Ye,Wuxuan Jiang. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[6] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[7] Huixiang Xiong,Wuxuan Jiang. Clustering and Recommending Users Based on Tags and Relation Network[J]. 数据分析与知识发现, 2017, 1(6): 36-46.
[8] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[9] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[10] Bo Guo,Shouguang Li,Hao Wang,Xiaojun Zhang,Wei Gong,Zhaojun Yu,Yu Sun. Examining Product Reviews with Sentiment Analysis and Opinion Mining[J]. 数据分析与知识发现, 2017, 1(12): 1-9.
[11] Zhu Ling,Xue Chunxiang,Zhang Chengzhi,Fu Zhu. User Tags and Microblog Posts: Case Study of Sina Weibo[J]. 现代图书情报技术, 2016, 32(3): 18-24.
[12] Wang Zhongqun, Jiang Sheng, Xiu Yu, Huang Subin, Wang Qiansong. Information Resource Recommendation Method Based on Dynamic Tag-Resource Network[J]. 现代图书情报技术, 2015, 31(3): 49-57.
[13] Wu Wankun, Wu Qinglie, Gu Jinjiang. Hot Topic Extraction from E-commerce Microblog Based on EM-LDA Integrated Model[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[14] Zhang Chengzhi, Li Lei. Automatic Quality Evaluation of Social Tags[J]. 现代图书情报技术, 2015, 31(10): 2-12.
[15] Zhang Yingyi, Zhang Chengzhi, Chi Xuehua, Li Lei. Difference Research on Keywords Tagging Behavior for Academic User Blog——A Case Study of ScienceNet.cn[J]. 现代图书情报技术, 2015, 31(10): 13-21.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn