Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (3): 21-28    DOI: 10.11925/infotech.2096-3467.2017.03.03
Orginal Article Current Issue | Archive | Adv Search |
Visualization of Coalition Data Based on Multi View Cooperation
Shen Xuefeng(), Ke Yongzhen, Yao Nan
School of Computer Science & Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China
Download: PDF (6163 KB)   HTML ( 26
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a data visualization model to retrieve, analyze and present historical records from a data coalition, aiming to improve the knowledge discovery. [Methods] We constructed a model for the visual data analysis system, and then used a big data platform to examine its feasibility. [Results] The proposed system could analyze massive historical data and then support the decision making procedures. [Limitations] The current visual analysis result views could be further improved by adding more chart templates. [Conclusions] The proposed system could analyze historical data from the library alliance and provide valuable information for decision makers.

Key wordsCoalition Data      Big Data      Visibility Analysis      Borrowed Records     
Received: 14 November 2016      Published: 25 September 1985
ZTFLH:  TP311 G350  

Cite this article:

Shen Xuefeng,Ke Yongzhen,Yao Nan. Visualization of Coalition Data Based on Multi View Cooperation. Data Analysis and Knowledge Discovery, 2017, 1(3): 21-28.

URL:     OR

[1] 任磊, 杜一, 马帅, 等. 大数据可视分析综述[J]. 软件学报, 2014, 25(9): 1909-1936.
doi: 10.13328/j.cnki.jos.004645
[1] (Ren Lei, Du Yi, Ma Shuai, et al.Visual Analytics Towards Big Data[J]. Journal of Software, 2014, 25(9): 1909-1936.)
doi: 10.13328/j.cnki.jos.004645
[2] 贺德方, 曾建勋. 基于语义的馆藏资源深度聚合研究[J]. 中国图书馆学报, 2012, 38(200): 79-87.
doi: 10.3969/j.issn.1001-8867.2012.04.010
[2] (He Defang, Zeng Jianxun.Study on In-depth Integration of Library Collections Based on Semantics[J]. Journal of Library Science in China. 2012, 38(200): 79-87.)
doi: 10.3969/j.issn.1001-8867.2012.04.010
[3] 赵迎春. 灰色关联分析在高校图书馆图书采购中的应用[J]. 农业图书情报学刊, 2016, 28(9): 114-118.
doi: 10.13998/j.cnki.issn1002-1248.2016.09.026
[3] (Zhao Yingchun.Application of Grey Relation Analysis Method in the College Libraies’ Books Acquisition[J]. Journal of Library and Information Sciences in Agriculture. 2016, 28(9): 114-118.)
doi: 10.13998/j.cnki.issn1002-1248.2016.09.026
[4] 尹纪军. 基于改进遗传神经网络的图书采购系统研究[D]. 镇江: 江苏大学, 2007.
[4] (Yin Jijun.Research on Book Purchasing System Based on Improved Genetic Neural Network [D]. Zhen Jiang: Jiangsu University, 2007.)
[5] 李媛, 胡蓉. 模糊综合评判法在高校图书馆文献采购中的应用[J]. 农业图书情报学刊, 2014, 26(5): 72-75.
[5] (Li Yuan, Hu Rong.The Application of Fuzzy Comprehensive Evaluation Method in the Document Purchasing of University Library[J]. Journal of Library and Information Sciences in Agriculture. 2014, 26(5): 72-75.)
[6] 迟春佳, 毛志勇. 基于数据挖掘的高校图书馆图书采购计划辅助决策研究[J]. 现代情报, 2009, 29(7): 108-110.
doi: 10.3969/j.issn.1008-0821.2009.07.031
[6] (Chi Chunjia, Mao Zhiyong.Research on Assistant Decision- making in Formulating University Library Book Purchasing Plan Based on Data Mining[J]. Journal of Modern Information, 2009, 29(7): 108-110.)
doi: 10.3969/j.issn.1008-0821.2009.07.031
[7] 冯娜. 浅议基于数据挖掘的高校图书馆购书计划[J]. 农业图书情报学刊, 2016, 28(4): 112-114.
doi: 10.13998/j.cnki.issn1002-1248.2016.04.026
[7] (Feng Na.A Brief Discussion of University Library’s Book Procurement Plan Based on Data Mining[J]. Journal of Library and Information Sciences in Agriculture, 2016, 28(4): 112-114.)
doi: 10.13998/j.cnki.issn1002-1248.2016.04.026
[8] 赵海森, 吕琳, 薄志涛. 面向层次化数据的变分圆形树图[J]. 软件学报, 2016, 27(5): 1103-1113.
[8] (Zhao Haisen, Lǚ Lin, Bo Zhitao.Variational Circular Treemaps for Hierarchical Data[J]. Journal of Software, 2016, 27(5): 1103-1113.)
[9] Schulz H J.Treevis. net: A Tree Visualization Reference[J]. IEEE Computer Graphics and Applications, 2011. 31(6): 11-15.
doi: 10.1109/MCG.2011.103 pmid: 24808254
[10] Schulz H J, Schumann H.Visualizing Graphs—A Generalized View[C]//Proceedings of the Conference on Information Visualization (IV 2006). Washington, USA: IEEE Computer Society, 2006, 166-173.
[11] Tak S, Cockburn A.Enhanced Spatial Stability with Hilbert and Moore Treemaps[J]. IEEE Transactions on Visualization and Computer, 2013. 19(1): 141-148.
doi: 10.1109/TVCG.2012.108 pmid: 22508907
[12] Lam H C, Dinov I D.Hyperbolic Wheel: A Novel Hyperbolic Space Graph Viewer for Hierarchical Information Content[J]. ISRN Computer Graphics, 2012(6): 487-493.
doi: 10.5402/2012/609234
[13] Ham F V, Wijk J V.Beamtrees: Compact Visualization of Large Hierarchies[J]. Information Visualization. 2003. 2(1): 31-39.
doi: 10.1057/palgrave.ivs.9500036
[14] 陈谊, 甄远刚, 胡海云, 等. 一种层次结构中多维属性的可视化方法[J]. 软件学报, 2016, 27(5): 1091-1102.
[14] (Chen Yi, Zhen Yuangang, Hu Haiyun, et al.Visualization Technique for Multi-Attrbute in Hierarchical Structure[J]. Journal of Software, 2016, 27(5): 1091-1102.)
[15] Chen Y, Zhang X Y, Feng Y C, et al.Sunburst with Ordered Nodes Based on Hierarchical Clustering: A Visual Analyzing Method for Associated Hierarchical Pesticide Residue Data[J]. Journal of Visualization, 2015. 18(2): 237-254.
doi: 10.1007/s12650-014-0269-3
[16] Bring Data to Life with SVG, Canvas and HTML[EB/OL]. [2016-11-04]..
[17] Vizuly. Weighted Tree [EB/OL]. [2016-11-04]. .
[18] NPasha. Bipartite Graph [EB/OL]. [2016-11-04]. .
[1] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[2] Wang Jiandong,Yu Shiyang. Principles on Constructing National Economic Brain[J]. 数据分析与知识发现, 2020, 4(7): 2-17.
[3] Jiandong Wang. Monitoring and Forecasting Economic Performance with Big Data[J]. 数据分析与知识发现, 2020, 4(1): 12-26.
[4] Beibei Kong,Jing Xie,Li Qian,Zhijun Chang,Zhenxin Wu. Methodology and Tools to Enrich Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(7): 113-122.
[5] Xiaozhou Dong,Xinkang Chen. E-Coupon and Economic Performance of E-commerce[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[6] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[7] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[8] Li Qian,Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang. Designing Smart Knowledge Services with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 4-14.
[9] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[10] Jing Xie,Li Qian,Hongbo Shi,Beibei Kong,Jiying Hu. Designing Framework for Precise Service of Scholarly Big Data[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
[11] Zhihong Shen,Chang Yao,Yanfei Hou,Linhuan Wu,Yuepeng Li. Big Linked Data Management: Challenges, Solutions and Practices[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[12] Cao Yang, Fan Wenfei, Yuan Tengfei. Is Big Data Analytics Beyond the Reach of Small Companies?[J]. 数据分析与知识发现, 2017, 1(9): 1-7.
[13] Lemen Chao,Canjun Yang,Shengjie Wang,Junpeng Zhao,Mengtian Xu. Data Science Curriculums Around the World: An Empirical Study[J]. 数据分析与知识发现, 2017, 1(6): 12-21.
[14] Liu Ruilun,Ye Wenhao,Gao Ruiqing,Tang Mengjia,Wang Dongbo. Research on Text Clustering Based on Requirements of Big Data Jobs[J]. 数据分析与知识发现, 2017, 1(12): 32-40.
[15] Cen Yonghua,Wang Yuefen. Social Public Opinion Analysis and Decision Making Support with Big Data[J]. 现代图书情报技术, 2016, 32(7-8): 3-11.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938