Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (3): 29-37    DOI: 10.11925/infotech.2096-3467.2017.03.04
Orginal Article Current Issue | Archive | Adv Search |
Extracting and Visualizing Knowledge Graph Schema from Linked Data with Cytoscape Platform
Jiang Ying(), Zhang Jing, Zhu Lingxuan
School of Management, Beijing Normal University, Zhuhai, Zhuhai 519087, China
Download: PDF (3603 KB)   HTML ( 17
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper proposes a new method to generate knowledge graph schema, aiming to help us understand the data structure before submitting a query, and improve the perfornamce of linked data retrieval. [Methods] First, we searched knowledge relations of the linked data through SPARQL. Second, we constructed knowledge graph schema triples for each identified relation. Finally, we extracted graphs schema triples from every knowledge class and merged them with those of the relations. [Results] A Cytoscape plugin was developed based on the proposed method to visualize the knowledge graph schema. [Limitations] Our method could not extract knowledge from complex classtification, such as anonymous nodes. [Conclusions] The proposed method was examined with biomedical data for single, inclusive, and bridge extractions. It could retrieve information effectively, and does not need additional crawling and index efforts.

Key wordsLinked Data      Knowledge Graph Schema      SPARQL      Cytoscape     
Received: 18 January 2017      Published: 20 April 2017
ZTFLH:  TP393  

Cite this article:

Jiang Ying,Zhang Jing,Zhu Lingxuan. Extracting and Visualizing Knowledge Graph Schema from Linked Data with Cytoscape Platform. Data Analysis and Knowledge Discovery, 2017, 1(3): 29-37.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.03.04     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I3/29

关联数据SPARQL访问点 RDF三元组个数 抽取时间(分钟)
Pathway Commons 27 623 683 8.16
BioCyc 18 532 342 9.57
MeSH 654 198 10.86
Reactome 2 980 230 6.45
rdfs:domain
知识分类
知识关系 rdfs:range
知识分类
meshv:TreeNumber meshv:parentTreeNumber meshv:TreeNumber
meshv:treeNumber meshv:TreeNumber
meshv:Concept meshv:broaderConcept meshv:Concept
meshv:Concept meshv:narrowerConcept meshv:Concept
meshv:Concept meshv:relatedConcept meshv:Concept
meshv:Descriptor meshv:broaderDescriptor meshv:Descriptor
meshv:hasDescriptor meshv:Descriptor
meshv:allowableQualifier meshv:Qualifier
meshv:hasQualifier meshv:Qualifier
meshv:Qualifier meshv:broaderQualifier meshv:Qualifier
子类(知识分类) 父类(知识分类)
meshv:TreeNumber owl:Thing
meshv:Concept owl:Thing
meshv:Descriptor owl:Thing
meshv:DescriptorQualifierPair owl:Thing
meshv:SupplementaryConceptRecord owl:Thing
meshv:Qualifier owl:Thing
meshv:Term owl:Thing
meshv:broaderQualifier meshv:Qualifier
对比项目 B1方法 B2方法 B方法(B1+B2) 本文
方法
抽取知识图谱概览
三元组数量
8 6 14 33
抽取查全率 22.86% 17.14% 40.00% 94.28%
关联数据SPARQL访问点 RDF三元组个数 图示节点形状
HGNC 922 523 圆形
MeSH 654 198 三角形
关联“包含” - 圆形
关联数据SPARQL访问点 RDF三元组个数 图示节点形状
BioModel 2 380 009 三角形
Pathway Commons 27 623 683 方形
Linkedspl 2 174 579 菱形
关联“桥” - 圆形
[1] Bizer C, Heath T, Berners-Lee T.Linked Data—The Story So Far[J]. International Journal on Semantic Web & Information Systems, 2009, 5(3): 1-22.
doi: 10.4018/jswis.2009081901
[2] Klyne G, Carroll J J, McBride B. RDF 1.1 Concepts and Abstract Syntax [EB/OL]. (2014-02-25). [2017-01-25]. .
[3] Harris S, Seaborne A. SPARQL 1.1 Query Language [EB/OL]. (2013-03-21). [2017-01-25]. .
[4] Feigenbaum L, Williams G T, Clark K G, et al. SPARQL 1.1 Protocol [EB/OL]. (2013-03-21). [2017-01-25]. .
[5] Schmachtenberg M, Bizer C, Paulheim H.Adoption of the Linked Data Best Practices in Different Topical Domains[C]// Proceedings of the 13th International Semantic Web Conference (ISWC 2014), Seattle, USA. Germany: Springer, 2014.
[6] Konrath M, Gottron T, Scherp A.Schemex-Web-Scale Indexed Schema Extraction of Linked Open Data[C]// Proceedings of the 13th International Semantic Web Conference (ISWC 2011) Submission to the Billion Triple Track, Bonn, Germany. Springer, 2011:52-58.
[7] Shannon P, Markiel A, Ozier O, et al.Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks[J]. Genome Research, 2003, 13(11): 2498-2504.
[8] Lanzenberger M, Sampson J, Rester M.Visualization in Ontology Tools[C]//Proceedings of the 2nd International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2009), Burgos, Spain. New York, USA: IEEE, 2009: 705-711.
[9] Gennari J H, Musen M A, Fergerson R W, et al.The Evolution of Protégé: An Environment for Knowledge-based Systems Development[J]. International Journal of Human- Computer Studies, 2003, 58(1): 89-123.
[10] Alani H.TGVizTab: An Ontology Visualisation Extension for Protégé[C]//Proceedings of the 2nd International Conference on Knowledge Capture (K-Cap’03), Florida, USA. ACM, 2003.
[11] Falconer S. OntoGraf [EB/OL]. [2017-01-25]. .
[12] Knublauch H, Fergerson R W, Noy N F, et al.The Protégé OWL Plugin: An Open Development Environment for Semantic Web Applications[C]//Proceedings of the 3rd International Semantic Web Conference (ISWC 2004), Karlsruhe, Germany. Springer, 2004: 229-243.
[13] Hussain A, Latif K, Rextin A T, et al.Scalable Visualization of Semantic Nets Using Power-Law Graphs[J]. Applied Mathematics & Information Sciences, 2014, 8(1): 355-367.
doi: 10.12785/amis/080145
[14] Haase P, Lewen H, Studer R, et al.The Neon Ontology Engineering Toolkit[C]//Proccedings of the 17th International World Wide Web Conference (WWW 2008), Beijing, China. ACM, 2008.
[15] Motta E, Mulholland P, Peroni S, et al.A Novel Approach to Visualizing and Navigating Ontologies[C]//Proceedings of the 10th International Semantic Web Conference (ISWC 2011), Bonn, Germany. Springer, 2011: 470-486.
[16] Krivov S, Villa F, Williams R, et al.On Visualization of OWL Ontologies[A]// Baker C J, Cheung K H. Semantic Web[M]. Springer Berlin Heidelberg, 2007: 205-221.
[17] Bārzdiņš J, Bārzdiņš G, Čerāns K, et al.UML Style Graphical Notation and Editor for OWL 2[C]//Proceedings of the 9th International Conference on Business Informatics Research (BIR 2010), Rostock, Germany. Springer, 2010: 102-114.
[18] Sintek M. OntoViz [EB/OL]. [2017-01-25]. .
[19] Lohmann S, Link V, Marbach E, et al.WebVOWL: Web-based Visualization of Ontologies[C]//Proceedings of the International Conference on Knowledge Engineering and Knowledge Management (EKAW 2014), Linköping, Sweden. Springer, 2014: 154-158.
[20] Katifori A, Halatsis C, Lepouras G, et al. Ontology Visualization Methods—A Survey[J]. ACM Computing Surveys, 2007, 39(4): Article No. 10.
doi: 10.1145/1287620.1287621
[21] Bosca A, Bomino D, Pellegrino P.OntoSphere: More than a 3D Ontology Visualization Tool[C]// Proceedings of the 2nd Italian Semantic Web Workshop (SWAP 2005), Trento, Italy. 2005.
[22] Brickley D, Guha R V. RDF Schema 1.1[EB/OL]. (2013- 03-21). [2017-01-25]. .
[23] Bechhofer S, Harmelen F V, Hendler J, et al. OWL Web Ontology Language Reference [EB/OL]. (2004-02-10). [2017-01-25]. .
[24] Grau B C, Horrocks I, Motik B, et al.OWL 2: The Next Step for OWL[J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2008,6(4): 309-322.
doi: 10.1016/j.websem.2008.05.001
[25] Gottron T, Knauf M, Scheglmann S, et al.A Systematic Investigation of Explicit and Implicit Schema Information on the Linked Open Data Cloud[C]//Proceedings of the 10th European Semantic Web Conference (ESWC 2013), Montpellier, France. Springer, 2013: 228-242.
[26] Zneika M, Lucchese C, Vodislav D, et al.RDF Graph Summarization Based on Approximate Patterns[C]// Proceedings of the International Workshop on Information Search, Integration, and Personalization (ISIP 2015), Grand Forks, USA. Springer, 2015: 69-87.
[27] Cerami E G, Gross B E, Demir E, et al.Pathway Commons, A Web Resource for Biological Pathway Data[J]. Nucleic Acids Research, 2011, 39(Database Issue): D685-D690.
doi: 10.1093/nar/gkq1039 pmid: 21071392
[28] Caspi R, Billington R, Ferrer L, et al.The MetaCyc Database of Metabolic Pathways and Enzymes and the BioCyc Collection of Pathway/Genome Databases[J]. Nucleic Acids Research, 2014, 42(Database Issue): D459-D471.
[29] Joshi-Tope G, Gillespie M, Vastrik I, et al.Reactome: A Knowledgebase of Biological Pathways[J]. Nucleic Acids Research, 2005, 33(Database Issue): D428-D432.
doi: 10.1093/nar/gki072 pmid: 540026
[30] Bruford E A, Lush M J, Wright M W, et al.The HGNC Database in 2008: A Resource for the Human Genome[J]. Nucleic Acids Research, 2008, 36(Database Issue): D445-D448.
doi: 10.1093/nar/gkm881 pmid: 17984084
[31] Novère N L, Bornstein B, Broicher A, et al.BioModels Database: A Free, Centralized Database of Curated, Published, Quantitative Kinetic Models of Biochemical and Cellular Systems[J]. Nucleic Acids Research, 2006, 34(Database Issue): D689-D691.
doi: 10.1093/nar/gkj092 pmid: 16381960
[32] Erling O, Mikhailov I.RDF Support in the Virtuoso DBMS[A]//Networked Knowledge-Networked Media[M]. Springer Berlin Heidelberg, 2009: 7-24.
[33] Weibel S.The Dublin Core: A Simple Content Description Model for Electronic Resources[J]. Bulletin of the Association for Information Science and Technology, 1997, 24(1): 9-11.
doi: 10.1002/bult.70
[34] Brickley D, Miller L. FOAF Vocabulary Specification 0.91[EB/OL]. (2007-11-02). [2017-01-25]. .
[1] Zhihong Shen,Chang Yao,Yanfei Hou,Linhuan Wu,Yuepeng Li. Big Linked Data Management: Challenges, Solutions and Practices[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[2] Jiawang Cui,Chunwang Li. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[3] Qi Yunfei,Zhao Yuxiang,Zhu Qinghua. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[4] Zhao Yiping,Bi Qiang. Using Linked Data to Retrieve Similar Documents from the Academic Resource Websites[J]. 现代图书情报技术, 2016, 32(3): 41-49.
[5] Guo Zhenying, Zhao Wenbing, Wei Yuhui. Construction of Linked Data with Lightweight Book Bibliography Ontology[J]. 现代图书情报技术, 2015, 31(7-8): 139-143.
[6] Gao Jinsong, Cheng Ya, Liang Yanqi. Ontology Matching for Linked Data Set[J]. 现代图书情报技术, 2015, 31(6): 33-40.
[7] Liang Yiduo, Zhai Jun. Research on Application of Ontology Reasoning in Linkage Discovery of Linked Data[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[8] Gao Jinsong, Liang Yanqi, Li Ke, Xiao Lian, Zhou Ximan. E-commerce Credit Information Service Model for Linked Data[J]. 现代图书情报技术, 2014, 30(6): 8-16.
[9] Yu Wei, Chen Junpeng. Linking and Mapping of Library Catalogue Data Based on MapReduce[J]. 现代图书情报技术, 2013, 29(9): 15-22.
[10] Wang Zhongyi, Xia Lixin, Shi Yijin, Zheng Senmao. The Creation and Publishing of Middle Linked Data in Digital Library[J]. 现代图书情报技术, 2013, (5): 28-33.
[11] Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship[J]. 现代图书情报技术, 2013, (4): 2-9.
[12] Xia Cuijuan. Research on RDB2RDF Standards and Applications[J]. 现代图书情报技术, 2013, (4): 10-17.
[13] Zhu Wenjing, Xia Cuijuan, Liu Wei. Analysis of SILK Linkage Discovery Framework[J]. 现代图书情报技术, 2013, (4): 18-24.
[14] Zhong Yuanxin, Li Tianzhang, Liu Wei. A Research on Linked Data Mashup in OPAC[J]. 现代图书情报技术, 2013, (4): 25-29.
[15] Gao Jinsong, Liang Yanqi, Ma Qianqian, Zhou Ximan, Fu Xuxiong. Citation Knowledge Linking Mode for Linked Data[J]. 现代图书情报技术, 2013, 29(3): 21-26.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn