Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (10): 77-84    DOI: 10.11925/infotech.2096-3467.2017.0366
Orginal Article Current Issue | Archive | Adv Search |
Analyzing owl:sameAs Network in Linked Data
Jia Junzhi(), Li Xiao
School of Economics and Management, Shanxi University, Taiyuan 030006, China
Download: PDF (2732 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] This paper examines the application of the owl:sameAs link in the Web of Data. [Methods] First, we extracted owl:sameAs links from the BTC 2014 dataset. Then, we analyzed the structure of the sample data, as well as their domain names and instance types. [Results] The retrieved links of owl:sameAs were sparse, and most entities only had single connection between each other. [Limitations] The size of our sample data was small, and more comprehensive analysis was needed. [Conclusions] Our study lays some foundations for data integration, ontology alignment, knowledge discovery of the Web of Data.

Key wordsowl:sameAs      Interlinking of Datasets      Network     
Received: 05 May 2017      Published: 08 November 2017
ZTFLH:  G254  

Cite this article:

Jia Junzhi,Li Xiao. Analyzing owl:sameAs Network in Linked Data. Data Analysis and Knowledge Discovery, 2017, 1(10): 77-84.

URL:     OR

谓词缩写 谓词URI及备注 数量
rdf:type <> 定义实例和类之间的联系 64 449
owl:sameAs <> 表示由不同URI标识的两个RDF资源指的是同一个对象 44 746
skos:exactMatch <> 连接两个有足够的可信度并在信息检索应用程序较大范围可以交替使用的概念, 是skos:closeMatch的子属性 13 102
rdfs:seeAlso <> 将一个资源关联到另一个解释它的资源 5 570
skos:closeMatch <> 连接两个足够相似以致在一些信息检索应用程序可以交替使用的概念 1 490
dcterms:type <> 描述文件格式、物理媒介或资源的维度 1 170
sameAs谓词 数量 占比
<> 44 746 97.60%
<> 631 1.38%
<owl:sameAs> 445 0.97%
<htpp://> 16 0.03%
<> 4 0.009%
<> 4 0.009%
源数据集 目标数据集 基于owl:sameAs连接的最常用的type对
源数据集type 目标数据集type <> <>
<> <>
<> <> <
<> <> <> <> <> <> <>
[1] Bizer C, Tom H, Berners-Lee T, et al.Linked Data: The Story So Far[J]. International Journal on Semantic Web & Information Systems, 2009, 5(3): 1-22.
doi: 10.4018/jswis.2009081901
[2] Abele A, McCrae J. Linking Open Data Cloud Diagram 2017 [EB/OL]. [2017-03-07].
[3] Schmachtenberg M, Bizer C, Paulheim H.Adoption of the Linked Data Best Practices in Different Topical Domains[C]// Proceedings of the 13th International Semantic Web Conference. 2014: 245-260.
[4] Gunaratna K, Lalithsena S, Sheth A.Alignment and Dataset Identification of Linked Data in Semantic Web[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2014, 4(2): 139-151.
doi: 10.1002/widm.1121
[5] Parundekar R, Knoblock C A, Ambite J L.Linking and Building Ontologies of Linked Data[C]// Proceedings of the 9th International Semantic Web Conference, Shanghai, China. 2010.
[6] Correndo G, Penta A, Gibbins N, et al.Statistical Analysis of the owl:sameAs Network for Aligning Concepts in the Linking Open Data Cloud[J]. Lecture Notes in Computer Science, 2012, 7447(5): 215-230.
doi: 10.1007/978-3-642-32597-7
[7] Nikolov A, Motta E.Capturing Emerging Relations Between Schema Ontologies on the Web of Data[C]//Proceedings of the 9th Semantic Web Conference, Shanghai, China. 2010.
[8] Gunaratna K, Thirunarayan K, Jain P, et al.A Statistical and Schema Independent Approach to Identify Equivalent Properties on Linked Data[C]// Proceedings of the 9th International Conference on Semantic Systems. ACM, 2013: 33-40.
[9] Bechhofer S, van Harmelen F, Hendler J, et al. OWL Web Ontology Language Reference. [EB/OL].[2016-11-02].
[10] 郭世泽, 陆哲明. 复杂网络基础理论[M]. 北京: 科学出版社, 2012.
[10] (Guo Shize, Lu Zheming.Basic Theory of Complex Networks [M].Beijing: Science Press, 2012.)
[11] Tobias K, Andreas H. Billion Triples Challenge 2014 Dataset [EB/OL]. [2016-10-11].
[12] Using owl:sameAs in Linked Data[EB/OL]. [2016-10-12].
[13] Auer S, Bizer C, Kobilarov G, et al.DBpedia: A Nucleus for a Web of Open Data[C]// Proceedings of the 6th International Semantic Web Conference on Semantic Web. 2007.
[14] Hotho A.BibSonomy: A Social Bookmark and Publication Sharing System[C]// Proceedings of the 14th International Conference on Conceptual Structures, Aalborg, Denmark. Aalborg University Press, 2006.
[15] EUscreen Linked Open Data Pilot [EB/OL]. [2017-03-08].
[1] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[2] Cai Yongming,Liu Lu,Wang Kewei. Identifying Key Users and Topics from Online Learning Community[J]. 数据分析与知识发现, 2020, 4(6): 69-79.
[3] Liu Weijiang,Wei Hai,Yun Tianhe. Evaluation Model for Customer Credits Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2020, 4(6): 80-90.
[4] Wang Mo,Cui Yunpeng,Chen Li,Li Huan. A Deep Learning-based Method of Argumentative Zoning for Research Articles[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[5] Li Wenzheng,Gu Yijun,Yan Hongli. Predicting Community Numbers with Network Bayesian Information Criterion[J]. 数据分析与知识发现, 2020, 4(4): 72-82.
[6] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[7] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[8] Liu Yuwen,Wang Kai. Finding Geographic Locations of Popular Online Topics[J]. 数据分析与知识发现, 2020, 4(2/3): 173-181.
[9] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[10] Xu Jianmin,Zhang Liqing,Wang Miao. Tracking Static Topics with Bayesian Network[J]. 数据分析与知识发现, 2020, 4(2/3): 200-206.
[11] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[12] Yu Chuanming,Zhong Yunci,Lin Aochen,An Lu. Author Name Disambiguation with Network Embedding[J]. 数据分析与知识发现, 2020, 4(2/3): 48-59.
[13] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
[14] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[15] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938