Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (4): 38-45    DOI: 10.11925/infotech.2096-3467.2017.04.05
Orginal Article Current Issue | Archive | Adv Search |
Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm
Lv Weimin1,2, Wang Xiaomei3(), Han Tao1
1National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2University of Chinese Academy of Sciences, Beijing 100049, China
3Institutes of Science and Development, Chinese Academy of Sciences, Beijing 100190, China
Download: PDF (525 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper proposes a method to recommend scientific research collaborators based on link prediction and machine learning, which improves the precision of traditional method. [Methods] First, we used Link Prediction Algorithm index to build the feature input, and adopted the Extremely Randomized Trees Algorithm to train the classifier. Then, we obtained the optimal weight combination with the traversal algorithm to combine the classification results linearly. Finally, we received the best recommendation of collaborators. [Results] The improved ET method had better performance than the existing ones in recommending the collaboration cities. Besides, the proposed method was less affected by factors such as the network structure, and could be used with more applications. [Limitations] Scientific research collaboration is affected by the cooperation motivation, geographical, language and many other factors. The weighted author network did not examine authors from the same cities or with the same organizations. [Conclusions] The propsoed method could produce better recommendation results, which might help universities, institutions and individuals identify academic collabortors.

Key wordsScientific Research Collaboration Network      Link Prediction      Machine Learning      Random Forest      Extremely Randomized Trees      Recommendation     
Received: 16 January 2017      Published: 24 May 2017
ZTFLH:  G350  

Cite this article:

Lv Weimin,Wang Xiaomei,Han Tao. Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm. Data Analysis and Knowledge Discovery, 2017, 1(4): 38-45.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.04.05     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I4/38

主要方法 代表性研究
指标加权 Guns[18]以安德鲁大学学院合作网络以及计量情报学领域的合作网络为例, 得出加权的链路预测指标比不加权指标预测效果要好。
基于时序分析 Tylenda等[19]考虑时间进化对预测结果的影响, 在Wang等[20]提出的局部概率模型基础上, 推导出考虑时间信息的最大熵原则方法, 把作者a、b最后一次合作到现在间隔的时间长度融入到加权的链路预测指标中, 提升链路预测的预测成功率。
不同层面网络对比 Yan等[13]从作者、机构、国家三个层面构造合作网络进行研究, 对比三个层面合作网络在8种独立预测指标下的预测结果, 发现越高层面预测精确度越高, 即国家层面高于机构层面高于个人层面。
加权网络 Liben-Nowell等[16]提出, 可以利用网络拓扑结构特征, 将论文标题、作者所在机构和地理位置信息加入到计算中, 对链路预测方法进行微调。具体实施时, Guns[21]将这些信息以不同层面的网络形式表现出来, 提出一种Multi-Input方法, 构建作者合作网络、部门网络和物理位置网络, 将三个子网络线性加权构成训练集。
数据说明 2008年 2009年 2010年
论文数/篇 120 027 139 810 148 426
点个数 4 638 5 088 5 400
边条数 39 712 47 689 53 073
精确度 指标(Weighted)
AA CN GD Katz RA SimRank RF
方法
ET
方法
$n=5$ 80% 80% 80% 60% 80% 60% 60% 60%
$n=10$ 80% 80% 90% 80% 90% 40% 60% 80%
$n=\text{20}$ 85% 80% 90% 80% 85% 30% 62% 80%
Accuracy
([AA, CN, GD, Katz, RA])
$n=5$ $n=10$ $n=\text{20}$
[0.0, 0.0, 1.0, 0.0, 0.0] 100% 97% 85%
[0.05, 0.0, 0.85, 0.0, 0.1] 100% 90% 90%
[0.0, 0.05, 0.85, 0.0, 0.1] 100% 90% 90%
[0.0, 0.0, 0.9, 0.0, 0.1] 100% 90% 90%
[0.0, 0.0, 0.85, 0.05, 0.1] 96% 90% 90%
[1] 张斌, 马费成. 科学知识网络中的链路预测研究述评[J]. 中国图书馆学报, 2015, 41(3): 99-113.
doi: 10.13530/j.cnki.jlis.150016
[1] (Zhang Bin, Ma Feicheng.A Review on Link Prediction of Scientific Knowledge Network[J]. Journal of Library Science in China, 2015, 41(3): 99-113.)
doi: 10.13530/j.cnki.jlis.150016
[2] Newman M E J. Scientific Collaboration Networks. I. Network Construction and Fundamental Results[J]. Physical Review E, 2001, 64(1): 016131.
doi: 10.1103/PhysRevE.64.016131 pmid: 11461355
[3] Newman M E J. Scientific Collaboration Networks. II. Shortest Paths, Weighted Networks, and Centrality[J]. Physical Review E, 2001, 64(1): 016132.
doi: 10.1109/AUTEST.2006.283755
[4] Newman M E J. The Structure of Scientific Collaboration Networks[J]. Proceedings of the National Academy of Sciences, 2001, 98(2): 404-409.
[5] Barabási A L, Jeong H, Néda Z, et al.Evolution of the Social Network of Scientific Collaborations[J]. Physica A: Statistical Mechanics and Its Applications, 2002, 311(3-4): 590-614.
doi: 10.1016/S0378-4371(02)00736-7
[6] De Solla Price D J. Little Science, Big Science… and Beyond[M]. New York: Columbia University Press, 1986.
[7] Zuckerman H A.Patterns of Name Ordering Among Authors of Scientific Papers: A Study of Social Symbolism and Its Ambiguity[J]. American Journal of Sociology, 1968, 74(3): 276-291.
doi: 10.1086/224641
[8] Kretschmer H.Author Productivity and Geodesic Distance in Bibliographic Co-authorship Networks, and Visibility on the Web[J]. Scientometrics, 2004, 60(3): 409-420.
doi: 10.1023/B:SCIE.0000034383.86665.22
[9] Lü L, Zhou T.Link Prediction in Complex Networks: A Survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 1150-1170.
doi: 10.1016/j.physa.2010.11.027
[10] Zhu B, Xia Y. An Information-theoretic Model for Link Prediction in Complex Networks[J]. Scientific Reports, 2015, 5: Article No. 13707.
doi: 10.1038/srep13707 pmid: 4558573
[11] Guns R, Rousseau R.Predicting and Recommending Potential Research Collaborations[C]//Proceedings of ISSI. 2013: 1409-1418.
[12] Guns R, Rousseau R.Recommending Research Collaborations Using Link Prediction and Random Forest Classifiers[J]. Scientometrics, 2014, 101(2): 1461-1473.
doi: 10.1007/s11192-013-1228-9
[13] Yan E, Guns R.Predicting and Recommending Collaborations: An Author-, Institution-, and Country-level Analysis[J]. Journal of Informetrics, 2014, 8(2): 295-309.
doi: 10.1016/j.joi.2014.01.008
[14] 张斌, 李亚婷. 知识网络演化模型研究述评[J]. 中国图书馆学报, 2016, 42(5): 85-101.
[14] (Zhang Bin, Li Yating.A Review of the Evolution Model of Scientific Knowledge Network[J]. Journal of Library Science in China, 2016, 42(5): 85-101.)
[15] Getoor L, Diehl C P.Link Mining: A Survey[J]. ACM SIGKDD Explorations Newsletter, 2005, 7(2): 3-12.
[16] Liben-Nowell D, Kleinberg J.The Link Prediction Problem for Social Networks[J]. Journal of the Association for Information Science and Technology, 2007, 58(7): 1019-1031.
doi: 10.1002/asi.20591
[17] 吕琳媛. 复杂网络链路预测[J]. 电子科技大学学报, 2010, 39(5): 651-661.
[17] (Lv Linyuan.Link Prediction on Complex Networks[J]. Journal of University of Electronic Science and Technology of China, 2010, 39(5): 651-661.)
[18] Guns R.Missing Links: Predicting Interactions Based on a Multi-relational Network Structure with Applications in Informetrics [A]. // Missing Links: Predicting Interactions Based on a Multi-relational Network Structure with Applications in Informetrics[M]. Universiteit Antwerpen (Belgium). 2012.
[19] Tylenda T, Angelova R, Bedathur S.Towards Time-aware Link Prediction in Evolving Social Networks[C]//Proceedings of the 3rd Workshop on Social Network Mining and Analysis. ACM, 2009: 1-10.
[20] Wang C, Satuluri V, Parthasarathy S.Local Probabilistic Models for Link Prediction[C]//Proceedings of the 7th IEEE International Conference on Data Mining. IEEE, 2007: 322-331.
[21] Guns R.Generalizing Link Prediction: Collaboration at the University of Antwerp as a Case Study[J]. Proceedings of the American Society for Information Science and Technology, 2009, 46(1): 1-15.
doi: 10.1002/meet.2009.1450460225
[22] Mitchell T M. Machine Learning.1997[J]. Burr Ridge, IL: McGraw Hill, 1997, 45(37): 870-877.
[23] Backstrom L, Leskovec J.Supervised Random Walks: Predicting and Recommending Links in Social Networks[C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. ACM, 2011: 635-644.
[24] Arora S K, Porter A L, Youtie J, et al.Capturing New Developments in an Emerging Technology: An Updated Search Strategy for Identifying Nanotechnology Research Outputs[J]. Scientometrics, 2013, 95(1): 351-370.
doi: 10.1007/s11192-012-0903-6
[25] Guns R.Bipartite Networks for Link Prediction: Can They Improve Prediction Performance[C]//Proceedings of ISSI. 2011: 249-260.
[26] Adamic L A, Adar E.Friends and Neighbors on the Web[J]. Social Networks, 2003, 25(3): 211-230.
doi: 10.1016/S0378-8733(03)00009-1
[27] Katz L.A New Status Index Derived from Sociometric Analysis[J]. Psychometrika, 1953, 18(1): 39-43.
doi: 10.1007/BF02289026
[28] Guns R.Link Prediction[A]//Measuring Scholarly Impact [M]. Springer International Publishing, 2014: 35-55.
[29] Pedregosa F, Varoquaux G, Gramfort A, et al.Scikit-learn: Machine Learning in Python[J]. Journal of Machine Learning Research, 2013, 12(10): 2825-2830.
doi: 10.1524/auto.2011.0951
[30] Hanley J A, McNeil B J. The Meaning and Use of the Area Under a Receiver Operating Characteristic (ROC) Curve[J]. Radiology, 1982, 143(1): 29-36.
[31] Herlocker J L, Konstan J A, Terveen L G, et al.Evaluating Collaborative Filtering Recommender Systems[J]. ACM Transactions on Information Systems (TOIS), 2004, 22(1): 5-53.
[32] Zhou T, Ren J, Medo M, et al.Bipartite Network Projection and Personal Recommendation[J]. Physical Review E, 2007, 76(2): 046115.
[33] Breiman L, Friedman J, Stone C J, et al.Classification and Regression Trees[M]. CRC Press, 1984.
[34] Schubert T, Sooryamoorthy R.Can the Centre-periphery Model Explain Patterns of International Scientific Collaboration Among Threshold and Industrialised Countries? The Case of South Africa and Germany[J]. Scientometrics, 2010, 83(1): 181-203.
doi: 10.1007/s11192-009-0074-2
[35] Boshoff N.South-South Research Collaboration of Countries in the Southern African Development Community (SADC)[J]. Scientometrics, 2010, 84(2): 481-503.
doi: 10.1007/s11192-009-0120-0
[36] Pavlov M, Ichise R.Finding Experts by Link Prediction in Co-authorship Networks[C]//Proceedings of the 2nd International Conference on Finding Experts on the Web with Semantics. 2007.
[1] Chen Dong,Wang Jiandong,Li Huiying,Cai Sihang,Huang Qianqian,Yi Chengqi,Cao Pan. Forecasting Poultry Turnovers with Machine Learning and Multiple Factors[J]. 数据分析与知识发现, 2020, 4(7): 18-27.
[2] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[3] Ye Jiaxin,Xiong Huixiang,Tong Zhaoli,Meng Qiuqing. Collaborative Tagging for Doctors in Online Medical Community[J]. 数据分析与知识发现, 2020, 4(6): 118-128.
[4] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[5] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[6] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[7] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[8] Pan Youneng,Ni Xiuli. Recommending Online Medical Experts with Labeled-LDA Model[J]. 数据分析与知识发现, 2020, 4(4): 34-43.
[9] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[10] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[11] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
[12] Bengong Yu,Yumeng Cao,Yangnan Chen,Ying Yang. Classification of Short Texts Based on nLD-SVM-RF Model[J]. 数据分析与知识发现, 2020, 4(1): 111-120.
[13] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[14] Ruojia Wang,Lu Zhang,Jimin Wang. Automatic Triage of Online Doctor Services Based on Machine Learning[J]. 数据分析与知识发现, 2019, 3(9): 88-97.
[15] Gang Li,Huayang Zhou,Jin Mao,Sijing Chen. Classifying Social Media Users with Machine Learning[J]. 数据分析与知识发现, 2019, 3(8): 1-9.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn