Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (7): 44-51    DOI: 10.11925/infotech.2096-3467.2017.0479
Orginal Article Current Issue | Archive | Adv Search |
Detecting Online Rumors with Sentiment Analysis
Shou Huanrong, Deng Shuqing, Xu Jian()
School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China
Download: PDF (704 KB)   HTML ( 6
Export: BibTeX | EndNote (RIS)      

[Objective] This paper aims to identify rumors automatically with the help of sentiment analysis. [Methods] First, we chose high-quality and low-quality information sources. Then, we calculated the sentiment value and difference between the information from different sources. Based on the assumption that the information from high-quality source was more reliable, information from low-quality channels could be listed as rumor if the sentiment difference between them exceeded the pre-set threshold. [Results] We applied the proposed method to information on food and health as well as health and medical issues, and then successfully identified twenty-three rumors from thirty suspected cases. The accuracy rate of rumor detection was 76.67%, the F-value was 83.34%, the recall and precision was 71.42% and 100%, respectively. For non-rumor message, the F-value, recall, and precision were 72.73%, 100% and 57.14%. [Limitations] We did not extract the data automatically from different sources and the sample size was relatively small. [Conclusions] Sentiment analysis could help us identify rumors effectively.

Key wordsSentiment Analysis      Sentiment Lexicon      Rumor Identification      Rumor Detection     
Received: 27 May 2017      Published: 12 July 2017
ZTFLH:  G350  

Cite this article:

Shou Huanrong,Deng Shuqing,Xu Jian. Detecting Online Rumors with Sentiment Analysis. Data Analysis and Knowledge Discovery, 2017, 1(7): 44-51.

URL:     OR

实际是谣言 实际不是谣言
预测是谣言 15 0
预测不是谣言 6 8
实际是谣言 实际不是谣言
预测是谣言 A B
预测不是谣言 C D
Pr 100%
Rr 71.42%
F1r 83.34%
Pn 57.14%
Rn 100%
F1n 72.73%
[1] 郭小安. 当代中国网络谣言的社会心理研究[M]. 北京: 中国社会科学出版社, 2015.
[1] (Guo Xiaoan.A Study on the Social Psychology of Contemporary Chinese Rumors Online[M]. Beijing: China Social Sciences Press, 2015.)
[2] 中国社会科学语言研究所词典编辑室. 现代汉语词典[M].第5版. 北京: 商务印书馆, 2005.
[2] (Dictionary of Chinese Social Sciences Language Research Institute.The Modern Chinese Dictionary [M]. The 5th Edition. Beijing: The Commercial Press, 2005.)
[3] 沙莲香. 社会心理学[M]. 第2版. 北京: 中国人民大学出版社, 2006.
[3] (Sha Lianxiang.Social Psychology[M]. The 2nd Edition. Beijing: China Renmin University Press, 2016.)
[4] Zhang L, Liu B.Sentiment Analysis and Opinion Mining[J]. Synthesis Lectures on Human Language Technologies, 2012, 30(1): 152-153.
[5] 杨立公, 朱俭, 汤世平.文本情感分析综述[J]. 计算机应用, 2013, 33(6): 1574-1578, 1607.
doi: 10.3724/SP.J.1087.2013.01574
[5] (Yang Ligong, Zhu Jian, Tang Shiping.Survey of Text Sentiment Analysis[J]. Journal of Computer Applications, 2013, 33(6): 1574-1578, 1607.)
doi: 10.3724/SP.J.1087.2013.01574
[6] Tong R M.An Operational System for Detecting and Tracking Opinions in Online Discussion[C]// Proceedings of the 26th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2001.
[7] 徐琳宏, 林鸿飞, 潘宇, 等.情感词汇本体的构造[J]. 情报学报, 2008, 27(2): 180-185.
doi: 10.3969/j.issn.1000-0135.2008.02.004
[7] (Xu Linhong, Lin Hongfei, Pan Yu, et al.Constructing the Affective Lexicon Ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 180-185.)
doi: 10.3969/j.issn.1000-0135.2008.02.004
[8] HowNet [EB/OL]. [2017-02-01].
[9] 陈晓东. 基于情感词典的中文微博情感倾向分析研究[D].武汉: 华中科技大学, 2012.
[9] (Chen Xiaodong.Research on Sentiment Dictionary Based Emotional Tendency Analysis of Chinese MicroBlog[D]. Wuhan: Huazhong University of Science & Technology, 2012.)
[10] 肖璐, 陈果, 刘继云. 基于情感分析的企业产品级竞争对手识别研究——以用户评论为数据源[J]. 图书情报工作, 2016, 60(1): 83-90, 97.
doi: 10.13266/j.issn.0252-3116.2016.01.012
[10] (Xiao Lu, Chen Guo, Liu Jiyun.Study on Identification of Enterprise Product Level Competitor Based on Sentiment Analysis: Taking User Reviews for Data Resources[J]. Library and Information Service, 2016, 60(1): 83-90, 97.)
doi: 10.13266/j.issn.0252-3116.2016.01.012
[11] Litton I. # TwitterCritic: Sentiment Analysis of Tweets to Predict TV Ratings [EB/OL]. [2017-03-05].
[12] Nguyen T H, Shirai K.Topic Modeling Based Sentiment Analysis on Social Media for Stock Market Prediction[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015: 1354-1364.
[13] 毛二松, 陈刚, 刘欣, 等. 基于深层特征和集成分类器的微博谣言检测研究[J]. 计算机应用研究, 2016, 33(11): 3369-3373.
doi: 10.3969/j.issn.1001--3695.2016.11.037
[13] (Mao Ersong, Chen Gang, Liu Xin, et al.Research on Detecting Micro-blog Rumors Based on Deep Features and Ensemble Classifier[J]. Application Research of Computers, 2016, 33(11): 3369-3373.)
doi: 10.3969/j.issn.1001--3695.2016.11.037
[14] Qazvinian V, Rosengren E, Radev D R, et al.Rumor Has It: Identifying Misinformation in Microblogs[C]// Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. 2012: 1589-1599.
[15] Kwon S, Cha M, Jung K.Rumor Detection over Varying Time Windows[J]. PLoS One, 2017, 12(1): e0168344.
doi: 10.1371/journal.pone.0168344 pmid: 28081135
[16] 张志安, 束开荣, 何凌南. 微信谣言的主题与特征[J]. 新闻与写作, 2016(1): 60-64.
[16] (Zhang Zhian, Shu Kairong, He Lingnan.The Topics and Features About Rumors on the WeChat[J]. News and Writing, 2016(1): 60-64.)
[17] 马费成, 宋恩梅. 信息管理学基础[M]. 第2版. 武汉: 武汉大学出版社, 2011: 136-142.
[17] (Ma Feicheng, Song Enmei.Principles of Information Management [M]. The 2nd Edition. Wuhan: Wuhan University Press, 2011: 136-142.)
[18] 杜嘉忠, 徐健, 刘颖. 网络商品评论的特征-情感词本体构建与情感分析方法研究[J]. 现代图书情报技术, 2014(5): 74-82.
[18] (Du Jiazhong, Xu Jian, Liu Ying.Research on Construction of Feature-Sentiment Ontology and Sentiment Analysis[J]. New Technology of Library and Information Service, 2014(5): 74-82.)
[19] 维基百科[EB/OL]. [2017-03-26].
[19] (Wikipedia[EB/OL].[2017-03-26].)
[20] 知乎[EB/OL]. [2017-03-26].
[20] (Zhihu [EB/OL]. [2017-03-26].)
[21] 果壳网[EB/OL]. [2017-03-26].
[21] (Guokr [EB/OL]. [2017-03-26].
[22] Giles J.Internet Encyclopedias Go Head to Head[J]. Nature, 2005, 138(15): 900-901.
[23] 百度[EB/OL]. [2017-03-26].
[23] (Baidu [EB/OL]. [2017-03-26].)
[24] 搜狗[EB/OL]. [2017-03-26].
[24] (Sougou [EB/OL]. [2017-03-26].)
[25] 流言百科[EB/OL]. [2017-03-26].
[25] (Liuyanbaike [EB/OL]. [2017-03-26].
[26] 百度文库. 疾病名称大全[EB/OL]. [2017-03-26].
[26] (Baidu Wenku.Full Listing of Disease Name [EB/OL]. [2017-03-26].)
[27] 吴江, 唐常杰, 李太勇, 等. 基于语义规则的Web金融文本情感分析[J]. 计算机应用, 2014, 34(2): 481-485.
[27] (Wu Jiang, Tang Changjie, Li Taiyong, et al.Sentiment Analysis on Web Financial Text Based on Semantic Rules[J]. Journal of Computer Applications, 2014, 34(2): 481-485.)
[1] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[2] Jiang Lin,Zhang Qilin. Research on Academic Evaluation Based on Fine-Grain Citation Sentimental Quantification[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[3] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[4] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[5] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[6] Xue Fuliang,Liu Lifang. Fine-Grained Sentiment Analysis with CRF and ATAE-LSTM[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[7] Ying Tan,Jin Zhang,Lixin Xia. A Survey of Sentiment Analysis on Social Media[J]. 数据分析与知识发现, 2020, 4(1): 1-11.
[8] Hui Nie,Huan He. Identifying Implicit Features with Word Embedding[J]. 数据分析与知识发现, 2020, 4(1): 99-110.
[9] Yonghua Cen,Zhihao Tan,Chengyao Wu. Impacts of Financial Media Information on Stock Market: An Empirical Study of Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(9): 98-114.
[10] Weicong Lu,Jian Xu. Sentiment Analysis for Online User Reviews Based on Tripartite Network[J]. 数据分析与知识发现, 2019, 3(8): 10-20.
[11] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[12] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[13] Fen Chen,Xiaohuan Gao,Yue Peng,Yuan He,Chunxiang Xue. Identifying Weibo Opinion Leaders with Text Sentiment Analysis[J]. 数据分析与知识发现, 2019, 3(11): 120-128.
[14] Kan Liu,Haochen Du. Detecting Twitter Rumors with Deep Transfer Network[J]. 数据分析与知识发现, 2019, 3(10): 47-55.
[15] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938