Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (7): 52-60    DOI: 10.11925/infotech.2096-3467.2017.0484
Orginal Article Current Issue | Archive | Adv Search |
Multi-Label Classification of Chinese Books with LSTM Model
Sanhong Deng,Yuyangzi Fu(),Hao Wang
School of Information Management, Nanjing University, Nanjing 210023
Jiangsu Key Laboratory of Data Engineering and Knowledge Service (Nanjing University), Nanjing 210023, China
Download: PDF(1324 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a new method to automatically cataloguing Chinese books based on LSTM model, aiming to solve the issues facing single or multi-label classification. [Methods] First, we introduced deep learning algorithms to construct a new classification system with character embedding technique. Then, we trained the LSTM model with strings consisting of titles and keywords. Finally, we constructed multiple binary classifiers, which were examined with bibliographic data from three universities. [Results] The proposed model performed well and had practical value. [Limitations] We only analyzed five categories of Chinese bibliographies, and the granularity of classification was coarse. [Conclusions] The proposed Chinese book classification system based on LSTM model could preprocess data and learn incrementally, which could be transferred to other fields.

Key wordsLSTM Model      Deep Learning      Character Embedding      Book Automatic Classification      Multi-label Classification     
Received: 27 May 2017      Published: 26 July 2017

Cite this article:

Sanhong Deng,Yuyangzi Fu,Hao Wang. Multi-Label Classification of Chinese Books with LSTM Model. Data Analysis and Knowledge Discovery, 2017, 1(7): 52-60.

URL:     OR

[1] 罗雪英. 也谈数字图书馆的建设目标[J]. 现代情报, 2002, 22(12): 131-132.
[1] (Luo Xueying.Talking About the Construction Target of Digital Library[J]. Modern Information, 2002, 22(12): 131-132.)
[2] Luhn H P.Auto-encoding of Documents for Information Retrieval Systems[M]. IBM Research Center, 1958.
[3] 肖明. WWW科技信息资源自动标引的理论与实践研究[D]. 北京: 中国科学院文献情报中心, 2001.
[3] (Xiao Ming.Study on the Theory and Practice of Automatic Indexing of WWW Science and Technology Information Resources[D]. Beijing: National Science Library, Chinese Academy of Sciences, 2001.)
[4] Lewis D D, Ringuette M.A Comparison of Two Learning Algorithms for Text Categorization[C]//Proceedings of the 3rd Annual Symposium on Document Analysis and Information Retrieval, Las Vegas. Information Science Research Institute, University of Nevada, 1994, 33: 81-93.
[5] Yang Y, Chute C G.An Example-based Mapping Method for Text Categorization and Retrieval[J]. ACM Transactions on Information Systems (TOIS), 1994, 12(3): 252-277.
[6] 陈立孚, 周宁, 李丹. 基于机器学习的自动文本分类模型研究[J]. 现代图书情报技术, 2005(10): 23-27.
[6] (Chen Lifu, Zhou Ning, Li Dan.Study on Machine Learning Based Automatic Text Categorization Model[J]. New Technology of Library and Information Service,2005(10): 23-27.)
[7] Weigend A S, Wiener E D, Pedersen J O.Exploiting Hierarchy in Text Categorization[J]. Information Retrieval, 1999, 1(3): 193-216.
[8] 苏金树, 张博锋, 徐昕. 基于机器学习的文本分类技术研究进展[J]. 软件学报, 2006, 17(9): 1848-1859.
[8] (Su Jinshu, Zhang Bofeng, Xu Xin.Advances in Machine Learning Based Text Categorization[J]. Journal of Software, 2006, 17(9): 1848-1859.)
[9] 吕小勇, 石洪波. 基于频繁项集的多标签文本分类算法[J]. 计算机工程, 2010, 36(15): 83-85.
[9] (Lv Xiaoyong, Shi Hongbo.Multi-label Text Classification Algorithm Based on Frequent Item Sets[J]. Computer Engineering, 2010, 36(15): 83-85.)
[10] Joachims T.Text Categorization with Support Vector Machines: Learning with Many Relevant Features[A]// Machine Learning: ECML-98[M]. Springer, Berlin, Heidelberg, 1998: 137-142.
[11] Crammer K, Singer Y.A New Family of Online Algorithms for Category Ranking[C]// Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland. New York: ACM, 2002: 151-158.
[12] Ueda N, Saito K.Parametric Mixture Models for Multi- Labeled Text[A]//Advances in Neural Information Processing Systems[M]. MIT Press, 2003: 737-744.
[13] Zhang M, Zhou Z.Multi-Label Learning by Instance Differentiation[C]//Proceedings of the 22nd Conference on Artificial Intelligence. 2007: 669-674.
[14] Liu Y, Jin R, Yang L.Semi-supervised Multi-label Learning by Constrained Non-negative Matrix Factorization[C]// Proceedings of the 21st Conference on Artificial Intelligence, Boston, Massachusetts, USA. 2006, 6: 421-426.
[15] Hochreiter S, Schmidhuber J.Long Short-term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[16] Gers F A, Schmidhuber J, Cummins F.Learning to Forget: Continual Prediction with LSTM[J]. Neural Computation, 2000, 12(10): 2451-2471.
[17] Graves A.Supervised Sequence Labelling with Recurrent Neural Networks [D]. München: Technische Universit?t München, 2008.
[18] Zaremba W, Sutskever I, Vinyals O.Recurrent Neural Network Regularization [OL]. arXiv Preprint, arXiv: 1409.2329.
[19] Hochreiter S.Recurrent Neural Net Learning and Vanishing Gradient[J]. International Journal of Uncertainity, Fuzziness and Knowledge-Based Systems, 1998, 6(2): 107-116.
[20] Hochreiter S, Bengio Y, Frasconi P, et al.Gradient Flow in Recurrent Nets: The Difficulty of Learning Long-term Dependencies[A]// A Field Guide to Dynamical Recurrent Neural Networks[M]. Wiley-IEEE Press, 2001.
[21] 邱锡鹏. 神经网络与深度学习[EB/OL]. [2017-04-21].
[21] (Qiu Xipeng.Neural Network and Deep Learning [EB/OL]. [2017-04-21].)
[22] Hinton G E.Learning Distributed Representations of Concepts[C]//Proceedings of the 8th Annual Conference of the Cognitive Science Society. 1986.
[23] Chung J, Cho K, Bengio Y.A Character-Level Decoder Without Explicit Segmentation for Neural Machine Translation[OL]. arXiv Preprint, arXiv:1603.06147.
[24] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[24] (Zhou Zhihua.Machine Learning[M]. Beijing: Tsinghua University Press, 2016.)
[25] Kingma D, Ba J.Adam: A Method for Stochastic Optimization[OL]. arXiv Preprint, arXiv:1412.6980.
[26] HUIWEN Software [EB/OL]. [2017-02-13].
[27] Python Software Foundation [EB/OL]. [2017-02-12].
[28] 李思男, 李宁, 李战怀. 多标签数据挖掘技术: 研究综述[J]. 计算机科学, 2013, 40(4): 14-21.
[28] (Li Sinan, Li Ning, Li Zhanhuai.Multi-label Data Mining: A Survey[J]. Computer Science, 2013, 40(4): 14-21.)
[29] 王昊, 严明, 苏新宁. 基于机器学习的中文书目自动分类研究[J]. 中国图书馆学报, 2010,36(6): 28-39.
[29] (Wang Hao, Yan Ming, Su Xinning.Research on Automatic Classification for Chinese Bibliography Based on Machine Learning[J]. Journal of the Library Science in China, 2010, 36(6): 28-39.)
[1] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[2] Jingjing Pei,Xiaoqiu Le. Identifying Coordinate Text Blocks in Discourses[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[3] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[4] Changlei Fu,Li Qian,Huaping Zhang,Huaming Zhao,Jing Xie. Mining Innovative Topics Based on Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[5] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[6] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[7] Guoming Feng,Xiaodong Zhang,Suhui Liu. Classifying Chinese Texts with CapsNet[J]. 数据分析与知识发现, 2018, 2(12): 68-76.
[8] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[9] Wengang Feng,Jing Huang. Early Warning for Civil Aviation Security Checks Based on Deep Learning[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[10] Jiaheng Hu,Yonghua Cen,Chengyao Wu. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[11] Danhao Zhu, Lei Yang, Dongbo Wang. Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model[J]. 数据分析与知识发现, 2016, 32(12): 36-43.
[12] Liyi Zhang,Chang Liu. Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction[J]. 现代图书情报技术, 2016, 32(1): 32-39.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938