Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (8): 31-38    DOI: 10.11925/infotech.2096-3467.2017.0511
Orginal Article Current Issue | Archive | Adv Search |
Analyzing Private College Students’ Online Lifestyle with Web-logs
Chen Runwen, Qiu Yong(), Huang Wenbin, Wang Jun
Department of Information Management, Peking University, Beijing 100871, China
Download: PDF (1403 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study reveals the private colleage students’ typical online life styles based on their usage of a navigational Web portal. [Methods] First, we collected the click and search data of the navigation page specifically designed for students. Then, we modeled the data and applied the K-means cluster algorithm to categorize the student behaviors. [Results] We found six major behaviors among private college students. However, these students mainly use the Web to watch videos, while only a small number of students use the Web to learn. [Limitations] The size and dimensions of the data need to be expanded. [Conclusions] This study identifies typical online life styles of private college students, which could help schools improve their administraion and services.

Key wordsPrivate College      Log Analysis      Cluster Analysis     
Received: 31 May 2017      Published: 26 July 2017
ZTFLH:  G35 TP311  

Cite this article:

Chen Runwen,Qiu Yong,Huang Wenbin,Wang Jun. Analyzing Private College Students’ Online Lifestyle with Web-logs. Data Analysis and Knowledge Discovery, 2017, 1(8): 31-38.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.0511     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I8/31

点击 搜索
字段 标签 字段 标签
downDate 日志日期 downDate 日志日期
time 时间 time 时间
UID 用户ID UID 用户ID
URL 点击的网址 engine 搜索引擎
isHot 是否为热门 word 检索词
loginTime 登录时间 loginTime 登录时间
prov 省份 prov 省份
city 城市 city 城市
UID type theme hour
031101846031@campus 点击 消费 11
031101846031@campus 搜索 学习 11
031101846031@campus 搜索 学习 11
031101846031@campus 搜索 学习 13
031101846031@campus 点击 视频 12
031101846031@campus 点击 视频 13
031101846031@campus 点击 视频 13
031101846031@campus 点击 学习 16
…… …… …… ……
用户ID 操作偏好 客户端使用量
点击 搜索 条数 上午 中午 下午 晚餐 晚间 夜间
031101846031 0.70 0.30 0.00 0.25 0.05 0.40 0.00 0.15 0.15
031102180309 1.00 0.00 0.09 0.29 0.14 0.14 0.29 0.14 0.00
31102195106 0.11 0.89 0.22 0.04 0.02 0.45 0.00 0.04 0.45
031102805624 0.85 0.15 0.00 0.10 0.15 0.30 0.10 0.15 0.20
31102814909 0.40 0.60 0.00 0.25 0.10 0.15 0.05 0.00 0.45
用户ID 内容偏好
工具 工作 社交 视频 消费 学习 学校 游戏 娱乐 直播 资讯
031101846031 0.00 0.00 0.00 0.50 0.05 0.30 0.00 0.05 0.10 0.00 0.00
031102180309 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00
31102195106 0.00 0.00 0.00 0.36 0.02 0.38 0.00 0.00 0.09 0.02 0.11
031102805624 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.05 0.80 0.00
31102814909 0.00 0.00 0.00 0.75 0.05 0.05 0.00 0.05 0.05 0.00 0.00
[1] 孙竞, 熊旭. 2016年全国民办学校17.1万所在校学生突破4825万人 [EB/OL]. [2017-01-18]. .
[1] (Sun Jing, Xiong Xu. The Number of Private Colleges has Reached 171,000 by 2016, with More than 48.25 Million Students [EB/OL]. [2017-01-18].
[2] 戚良艳, 许月英. 上海民办高校学生闲暇生活调查与分析[J]. 浙江树人大学学报:人文社会科学版, 2010(4): 124-128.
[2] (Qi Liangyan, Xu Yueying.An Investigation and Analysis of Students’ Leisure Life in Private Colleges and Universities in Shanghai[J]. Journal of Zhejiang Shuren University: Humanities and Social Sciences, 2010(4): 124-128.)
[3] 朱云汉. 论民办高校大学生网络学习行为[J]. 中国成人教育, 2015(14): 136-137.
[3] (Zhu Yunhan.Behavior of Private College Students’ Online Learning[J]. China Adult Education, 2015(14): 136-137.)
[4] 林红. 民办与普通高校学生网络依赖状况的比较研究[J]. 青少年研究(山东省团校学报), 2008(6): 24-28.
doi: 10.3969/j.issn.1673-8950.2008.06.008
[4] (Lin Hong.A Comparative Study on the Internet Dependence of Private College Students[J]. Youth and Adolescence Studies, 2008(6): 24-28.)
doi: 10.3969/j.issn.1673-8950.2008.06.008
[5] 王继民, 彭波. 搜索引擎用户访问量模型[J]. 计算机工程与应用, 2004, 40(25): 9-11.
doi: 10.3321/j.issn:1002-8331.2004.25.003
[5] (Wang Jimin, Peng Bo.Modeling Quantity of Users/Access for Search Engine[J]. Computer Engineering and Applications, 2004, 40(25): 9-11.)
doi: 10.3321/j.issn:1002-8331.2004.25.003
[6] Srikant R, Agrawal R.Mining Quantitative Association Rules in Large Relational Tables[J]. ACM SIGMOD Record, 1996, 25(2): 1-12.
doi: 10.1145/233269.233311
[7] 王敏. 基于行为日志数据的MOOC学习者学习行为分析研究[D]. 上海: 华东师范大学, 2016.
[7] (Wang Min.Research on MOOC Learning Behavior Based on Behavior Log Data [D]. Shanghai: East China Normal University, 2016.)
[8] 张玉峰, 何超. 基于Web日志挖掘的网络动态竞争情报分析研究[J]. 情报理论与实践, 2011, 34(9): 51-53.
[8] (Zhang Yufeng, He Chao.Research on Dynamic Competitive Intelligence Analysis Based on Web Log Mining[J]. Information Studies: Theory & Application, 2011, 34(9): 51-53.)
[9] 张文君, 王军, 徐山川. 电商用户需求状态的聚类分析——以淘宝网女装为例[J]. 现代图书情报技术, 2015 (3): 67-74.
[9] (Zhang Wenjun, Wang Jun, Xu Shanchuan.Clustering Analysis of Demand State of E-commerce Users - Taking Taobao Women’s Clothing as an Example[J]. New Technology of Library and Information Service, 2015 (3): 67-74.)
[10] Prasad P, Malik L G.Generating Customer Profiles for Retail Stores Using Clustering Tech[J]. International Journal on Computer Science & Engineering, 2011, 3(6): 2506-2510.
[11] Moe W W.Buying, Searching, or Browsing: Differentiating Between Online Shoppers Using In-Store Navigational Clickstream[J]. Journal of Consumer Psychology, 2003, 13(1-2): 29-39.
doi: 10.1207/S15327663JCP13-1&2_03
[12] 于亚秀. 基于Web日志挖掘的个性化服务研究[D]. 上海: 华东师范大学, 2009.
[12] (Yu Yaxiu.Research on Personalized Service Based on Web Usage Mining [D]. Shanghai: East China Normal University, 2009.)
[13] Jain A K.Data Clustering: 50 Years Beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
doi: 10.1016/j.patrec.2009.09.011
[1] Dongmei Mu,Shan Jin,Yuanhong Ju. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[2] Xiang Zhou,Pengyi Zhang,Jun Wang. Impacts of Information Browsing Behaviors on Mobile Shopping: Case Study of Commerce APP Click Stream Analysis[J]. 数据分析与知识发现, 2018, 2(4): 1-9.
[3] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[4] Yue He,Aixin Wang,Yue Feng,Li Wang. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[5] Wang Xueying,Zhang Zixuan,Wang Hao,Deng Sanhong. Evaluating Brands of Agriculture Products: A Literature Review[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[6] Cui Jiawang,Li Chunwang. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[7] Chen He. Using Logstash and ElasticSearch to Achieve Real-time Statistical Analysis of DSpace Logs[J]. 现代图书情报技术, 2015, 31(5): 88-93.
[8] Chen Yong, Li Honglian, Lv Xueqiang. Analysis for the Search Behavior of Web Users[J]. 现代图书情报技术, 2014, 30(12): 10-17.
[9] Li Beiwei, Xu Yue, Shan Jimin, Wei Changlong, Zhang Xinqi, Fu Jinxin. Study on Network Information Ecological Chain of Chinese Shopping Websites[J]. 现代图书情报技术, 2013, 29(9): 67-73.
[10] Liang Changyong, Wang Qianqian, Lu Wenxing, Ding Yong. The Online Comments Signature Words Selection with the Title and Description of Goods[J]. 现代图书情报技术, 2011, 27(5): 49-54.
[11] Tong Yifu, Huang Chunyi. Research on Data Mining of Complex Multi-dimensional Fingerprint Data of TCM[J]. 现代图书情报技术, 2011, 27(12): 69-73.
[12] Qiu Yuhong,Guo Jijun. Application of Vector Space Model in the Similarity Research of Medical Literature[J]. 现代图书情报技术, 2007, 2(7): 63-67.
[13] in Ying,Deng Sanhong . Cited-Keywords Clustering of China Social Science Disciplines[J]. 现代图书情报技术, 2006, 1(9): 43-48.
[14] Qin Jian,Javier Calzada Prado. Use of Learning Object Vocabulary in GEM Queries[J]. 现代图书情报技术, 2006, 22(1): 44-46.
[15] Jiang Chuanju. The Function of Log Analysis in Network Security[J]. 现代图书情报技术, 2004, 20(12): 58-60.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn