Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (11): 29-36    DOI: 10.11925/infotech.2096-3467.2017.0566
Orginal Article Current Issue | Archive | Adv Search |
Evaluating Online Healthcare Consultation Feedbacks Based on Signal Transmission Algorithm
Liu Tong(), Yang Jingcheng
Antai College of Economics & Management, Shanghai Jiaotong University, Shanghai 200030, China
Download: PDF (984 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper designs and implements an unsupervised algorithm to evaluate the information accuracy of physicians’ feedbacks from online consulting service. [Methods] First, we identified word co-occurrence relationships based on large amount of online service records. Then, we built a statistical model to predict standard feedbacks for the given questions. Finally, we decided the accuracy of physicians’ answers by calculating content similarity between real feedbacks and the standard ones. [Results] We examined the proposed algorithm with records from Haodf.com as well as manually labeled results. The accuracy rates were 41.0% and 82.4% for rigorous and relax matching. [Limitations] We did not include the word sequence information in the algorithm. [Conclusions] The proposed algorithm could help patients know the accuracy of online medical information and improve their healthcare decisions makings.

Key wordsOnline Consultation      Word Co-occurrence Graph      PageRank     
Received: 12 June 2017      Published: 27 November 2017
ZTFLH:  TP391.1  

Cite this article:

Liu Tong,Yang Jingcheng. Evaluating Online Healthcare Consultation Feedbacks Based on Signal Transmission Algorithm. Data Analysis and Knowledge Discovery, 2017, 1(11): 29-36.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.0566     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I11/29

词汇 词频 词汇 词频
手术 401 452 超声 82 055
下肢 208 852 显示 79 720
小腿 190 907 华法林 67 393
正常 167 454 67 095
左侧 155 061 右下肢 61 719
静脉 125 440 皮肤 61 631
动脉 125 003 腘静脉 60 776
静脉曲张 115 692 斑块 60 696
管腔 108 630 扩张 56 966
内径 90 385 深静脉 55 742
词汇 词频 词汇 词频
手术 47 893 溃疡 4 550
下肢 18 658 小腿 4 325
动脉 16 356 皮肤 4 309
静脉 14 393 下肢深静脉 4 278
静脉曲张 13 789 神经 4 194
深静脉 9 426 正常 4 144
超声 8 695 静脉血 4 086
华法林 5 822 瓣膜 4 066
下肢静脉 5 537 斑块 3 971
扩张 5 149 部位 3 537
[1] Oh S, Yan Z, Min S P.Health Information Needs on Diseases: A Coding Schema Development for Analyzing Health Questions in Social Q&A[J]. Proceedings of the American Society for Information Science & Technology, 2012, 49(1): 1-4.
doi: 10.1002/meet.14504901316
[2] 邓胜利, 管弦. 基于问答平台的用户健康信息获取意愿影响因素研究[J]. 情报科学, 2016, 34(11): 53-59.
[2] (Deng Shengli, Guan Xian.Study of the Factors Influencing User Intention of Access to Health Information Based on Social Q&A[J]. Information Science, 2016, 34(11): 53-59.)
[3] Yang H, Guo X, Wu T.Exploring the Influence of the Online Physician Service Delivery Process on Patient Satisfaction[J]. Decision Support Systems, 2015, 78: 113-121.
doi: 10.1016/j.dss.2015.05.006
[4] Zhu Z, Bernhard D, Gurevych I.A Multi-Dimensional Model for Assessing the Quality of Answers in Social Q&A Sites[C]//Proceedings of International Conference on Information Quality. DBLP, 2009.
[5] 贾佳, 宋恩梅, 苏环. 社会化问答平台的答案质量评估——以 “知乎”, “百度知道” 为例[J]. 信息资源管理学报, 2013, 3(2): 19-28.
[5] (Jia Jia, Song Enmei, Su Huan.Research on Assessment of Answer Quality in Social Q&A Platform[J]. Journal of Information Research Management, 2013, 3(2): 19-28.)
[6] 罗毅, 曹倩. 基于RIPA 方法的社会问答平台答案质量研究[J]. 图书情报工作, 2015, 59(3): 126-133.
doi: 10.13266/j.issn.0252-3116.2015.03.018
[6] (Luo Yi, Cao Qian.Research on Answers’ Quality of Social Q&A Platforms Based on RIPA[J]. Library and Information Service, 2015, 59(3): 126-133.)
doi: 10.13266/j.issn.0252-3116.2015.03.018
[7] Jeon J, Croft W B, Lee J H, et al.A Framework to Predict the Quality of Answers with Non-textual Features[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 228-235.
[8] Agichtein E, Castillo C, Donato D, et al.Finding High-quality Content in Social Media[C]//Proceedings of International Conference on Web Search and Web Data Mining. DBLP, 2008: 183-194.
[9] 来社安, 蔡中民. 基于相似度的问答社区问答质量评价方法[J]. 计算机应用与软件, 2013, 30(2): 266-269.
[9] (Lai Shean, Cai Zhongmin.Question Answering Quality Evaluation for Community Question Answering Based on Similarity[J]. Computer Applications and Software, 2013, 30(2): 266-269.)
[10] Hu H, Liu B, Wang B, et al.Multimodal DBN for Predicting High-Quality Answers in cQA Portals[C]// Proceedings of Meeting of the Association for Computational Linguistics. 2013: 843-847.
[11] Toba H, Ming Z Y, Adriani M, et al.Discovering High Quality Answers in Community Question Answering Archives Using a Hierarchy of Classifiers[J]. Information Sciences, 2014, 261(5): 101-115.
doi: 10.1016/j.ins.2013.10.030
[12] 徐安滢, 吉宗诚, 王斌. 基于用户回答顺序的社区问答答案质量预测研究[J]. 中文信息学报, 2017, 31(2): 132-138.
[12] (Xu Anying, Ji Zongcheng, Wang Bin.Answer Quality Prediction Based on Answering Order in Community Question Answering[J]. Journal of Chinese Information Processing, 2017, 31(2): 132-138.)
[13] Page L, Brin S, Motwani R, et al.The PageRank Citation Ranking: Bringing Order to the Web [R]. Stanford InfoLab, 1999.
[14] Mihalcea R, Tarau P.TextRank: Bringing Order into Texts[C]// Proceedings of Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2004.
[15] Griffiths T L, Steyvers M.Finding Scientific Topics[J]. Proceedings of the National Academy of Sciences, 2004, 101(S1): 5228-5235.
doi: 10.1073/pnas.0307752101
[1] Qikai Cheng,Jiamin Wang,Wei Lu. Discovering Domain Vocabularies Based on Citation Co-word Network[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[2] Xiaowei Chen,Yutian Shi. Identifying Key Nodes in Social Network with Improved PageRank Algorithm[J]. 数据分析与知识发现, 2017, 1(8): 68-75.
[3] Tang Xiaobo, Fang Xiaoke. Research on Microblog Ranking Strategy with the Social Relations[J]. 现代图书情报技术, 2013, 29(9): 74-81.
[4] Duan Xiaoli, Wang Yu. The Subject Extraction Based on Topic Segmentation and PageRank Algorithm[J]. 现代图书情报技术, 2010, 26(12): 34-39.
[5] Fu Zhenzhen,Lu Wei. The Search Engine Optimizing Strategy and Evaluation Based on Keywords[J]. 现代图书情报技术, 2009, 25(6): 61-65.
[6] Wang Jiandong,Sun Huiming. An Empirical Study of Ranking “211 Project” Universities Based on Websites Hyperlinks Analysis[J]. 现代图书情报技术, 2008, 24(9): 64-69.
[7] Yang Siluo. Research on Ranking Technology of Search Engines[J]. 现代图书情报技术, 2005, 21(1): 43-47.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn