Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (6): 22-35    DOI: 10.11925/infotech.2096-3467.2017.06.03
Orginal Article Current Issue | Archive | Adv Search |
Review of Social Recommendation with Bibliometrics and Social Network Analysis
Fei Li,Jian Zhang(),Zongshui Wang
School of Economics&Management, Beijing Information Science&Technology University, Beijing 100192, China
Beijing Key Lab of Green Development Decision Based on Big Data, Beijing 100192, China
Download: PDF(3554 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper summarizes the content characteristics and network evolution of social recommendation research based on the of bibliometrics and social network analysis. [Methods] First, we collected the data of social recommendation research from the Web of Science database. Then we analyzed the data with manual interpretation, keywords co-occurrence analysis, bibliometrics, social network analysis and data visualization. [Results] A total of 3701 articles on social recommendation were retrieved, which have been increasing recently. Based on the threshold of papers published each year, we divided the development of social recommendation research into three distinct stages. [Limitations] We only used keywords to explore the characteristics of the relevant document contents, which could be improved with in-depth text mining. There is lack of uniform criterion to classify the evolution stages of the related research. Our study only shows the changing of contents and development trends. [Conclusions] The international impacts of Chinese scholars have been rising in social recommendation studies, which highly focus on the topics of social media and collaborative filtering.

Key wordsSocial Recommendation      Research Progress      Development Trend      Social Network Analysis      Bibliometrics     
Received: 22 March 2017      Published: 25 August 2017

Cite this article:

Fei Li,Jian Zhang,Zongshui Wang. Review of Social Recommendation with Bibliometrics and Social Network Analysis. Data Analysis and Knowledge Discovery, 2017, 1(6): 22-35.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.06.03     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2017/V1/I6/22

[1] 赵宇翔, 范哲, 朱庆华. 用户生成内容(UGC)概念解析及研究进展[J]. 中国图书馆学报, 2012, 36(5): 68-81.
[1] (Zhao Yuxiang, Fan Zhe, Zhu Qinghua.Conceptualization and Research Progress on User-Generated Content[J]. Journal of Library Science in China, 2012, 36(5): 68-81.)
[2] Resnick P, VarianH R. Recommender Systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
[3] Toffler A.Future Shock[M]. New York: Amereon Ltd., 1970.
[4] Lü L Y, Medo M, Yeung C H, et al.Recommender Systems[J]. Physics Reports, 2012, 519(1): 1-49.
[5] 田莹颖. 基于社会化标签系统的个性化信息推荐探讨[J].图书情报工作, 2010, 54(1): 50-53.
[5] (Tian Yingying.On Personalized Information Recommendation Based on Social Tagging System[J]. Library and Information Service, 2010, 54(1): 50-53.)
[6] J?schke R, Marinho L, Hotho A, et al.Tag Recommendations in Social Bookmarking Systems[J]. AI Communications, 2008, 21(4): 231-247.
[7] Rawashdeh M, Alhamid M F, Kim H N, et al.Graph-based Personalized Recommendation in Social Tagging Systems[C] //Proceedings of IEEE International Conference on Multimedia and Expo Workshops (ICMEW), Chengdu, China. USA: IEEE, 2014: 1-6.
[8] Wu B X, Xiao J, Chen J M.Friend Recommendation by User Similarity Graph Based on Interest in Social Tagging Systems[C]//Proceedings of International Conference on Intelligent Computing.2015: 375-386.
[9] Wu H, Yue K, Pei Y, et al.Collaborative Topic Regression with Social Trust Ensemble for Recommendation in Social Media Systems[J]. Knowledge-Based Systems, 2016, 97(C): 111-122.
[10] Shi C, Liu J, Zhuang F, et al.Integrating Heterogeneous Information via Flexible Regularization Framework for Recommendation[J]. Knowledge & Information Systems, 2015, 49(3): 835-859.
[11] Zhang Z, Liu Y, Xu G, et al.Recommendation Using DMF-based Fine Tuning Method[J]. Journal of Intelligent Information Systems, 2016, 47(2): 233-246.
[12] Wang Z, Sun L, Zhu W, et al.Joint Social and Content Recommendation for User-generated Videos in Online Social Network[J]. IEEE Transactions on Multimedia, 2013, 15(3): 698-709.
[13] Quijano-Sanchez L, Recio-Garcia J A, Diaz-Agudo B, et al. Social Factors in Group Recommender Systems[J]. ACM Transactions on Intelligent Systems & Technology, 2013, 4(1): Article No. 8.
[14] Hotho A, J?schke R, Schmitz C, et al.Information Retrieval in Folksonomies: Search and Ranking[C]//Proceedings of the 3rd European Conference on the Semantic Web: Research and Applications.2006: 411-426.
[15] Rendle S, Marinho L B, Nanopoulos A, et al.Learning Optimal Ranking with Tensor Factorization for Tag Recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, France. New York: ACM, 2009: 727-736.
[16] Song Y, Zhuang Z, Li H, et al.Real-time Automatic Tag Recommendation[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research & Development in Information Retrieval, Singapore. New York: ACM, 2008: 515-522.
[17] Abbasi R, Grzegorzek M, Staab S.Using Colors as Tags in Folksonomies to Improve Image Classification [EB/OL]. [2017-01-15]..
[18] Eck D, Lamere P, Green S, et al.Automatic Generation of Social Tags for Music Recommendation[J]. Advances in Neural Information Processing Systems, 2007, 20: 385-392.
[19] Golbeck J.Generating Predictive Movie Recommendations from Trust in Social Networks[C]//Proceedings of the International Conference on Trust Management, Pisa, Italy. Berlin Heidelberg: Springer, 2006: 93-104.
[20] 孟祥武, 刘树栋, 张玉洁, 等. 社会化推荐系统研究[J]. 软件学报, 2015, 26(6): 1356-1372.
[20] (Meng Xiangwu, Liu Shudong, Zhang Yujie, et al.Research on Social Recommender Systems[J]. Journal of Software, 2015, 26(6): 1356-1372. )
[21] Sun Z B, Han L X, Huang W L.Recommender Systems Based on Social Networks[J]. Journal of Systems and Software, 2015, 99(C): 109-119.
[22] Baik J, Lee K, Lee S, et al.Predicting Personality Traits Related to Consumer Behavior Using SNS Analysis[J]. New Review of Hypermedia and Multimedia, 2016, 22(3): 189-206.
[23] 唐果媛, 张薇. 国内外共词分析法研究的发展与分析[J]. 图书情报工作, 2014, 58(22): 138-145.
[23] (Tang Guoyuan, Zhang Wei.Development and Analysis of Co-word Analysis Method at Home and Abroad[J]. Library and Information Service, 2014, 58(22): 138-145.)
[24] 蒋颖. 人文社会科学领域文献计量学研究[M]. 北京: 社会科学文献出版社, 2013.
[24] (Jiang Ying.Biblometrics in Social Science and Humanities[M]. Beijing: Social Sciences Academic Press, 2013.)
[25] Scott J.Social Network Analysis: A Handbook[M]. SAGE Publications, 1991.
[26] He Q.Knowledge Discovery Through Co-word Analysis[J]. Library Trends, 1999, 48(1): 133-159.
[27] Dehdarirad T, Villarroya A, Barrios M.Research Trends in Gender Differences in Higher Education and Science: A Co-word Analysis[J]. Scientometrics, 2014, 101(1): 273-290.
[28] Bonchi F, Castillo C, Gionis A, et al.Social Network Analysis and Mining for Business Applications[J].ACM Transactions on Intelligent Systems & Technology, 2011, 2(3): 1-37.
[29] Social Network Analysis: A Brief Introduction [EB/OL]. [2017-01-05]. .
[30] Siersdorfer S, Sizov S.Social Recommender Systems for Web 2.0 Folksonomies[C]//Proceedings of the 20th ACM Conference on Hypertext and Hypermedia. New York: ACM, 2009: 261-270.
[31] Guy I, Carmel D.Social Recommender Systems[J]. Intelligent Systems Reference Library, 2015, 32(1): 3-42.
[32] Arazy O, Kumar N, Shapira B.Improving Social Recommender Systems[J]. IT Professional, 2009, 11(4): 38-44.
[33] Kazienko P, Musial K, Kajdanowicz T.Multidimensional Social Network in the Social Recommender System[J]. IEEE Transactions on Systems, Man & Cybernetics, Part A: Systems & Humans, 2011, 41(4): 746-759.
[34] Ma H, Zhou D, Liu C, et al.Recommender Systems with Social Regularization[C]// Proceedings of the 4th International Conference on Web Search and Web Data Mining, Hong Kong, China. ACM, 2011: 287-296.
[35] Tang J, Hu X, Liu H.Social Recommendation: A Review[J]. Social Network Analysis and Mining, 2013, 3(4): 1113-1133.
[36] King I, Lyu M R, Ma H.Introduction to Social Recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. New York: ACM, 2010: 1355-1356.
[37] Ma H, King I, Lyu M.Learning to Recommend with Social Trust Ensemble[C]//Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrievel. New York: ACM, 2009: 203-210.
[38] Jamali M, Ester M.A Matix Factorization Technique with Trust Propagations for Recommendation in Social Networks[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2010: 135-142.
[39] Jamali M, Ester M.TrustWalker: A Random Walk Model for Combining Trust-based and Item-based Recommendation[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2009: 397-406.
[40] Carmagnola F, Vernero F, Grillo P.SoNARS: A Social Networks-based Algorithm for Social Recommender Systems[C]// Proceedings of the International Conference on User Modeling, Adaptation, and Personalization. New York: Springer, 2009.
[41] Zhang R, Sun B, Kang W, et al.Gloss: A Social Networks- based Recommender System[C]//Proceedings of the 5th International Conference on Pervasive Computing and Applications (ICPCA). IEEE, 2010: 122-127.
[42] Viennet E.Collaborative Filtering in Social Networks: A Community-based Approach[C]//Proceedings of the 2013 International Conference on Computing, Management and Telecommunications. IEEE, 2013: 128-133.
[43] Heymann P, Koutrika G, Garcia-Molina H.Can Social Bookmarking iImprove Web Search?[C]//Proceedings of the International Conference on Web Search and Web Data Mining. New York: ACM, 2008: 195-206.
[44] Hannon J, Bennett M, Smyth B.Recommending Twitter Users to Follow Using Content and Collaborative Filtering Approaches[C]//Proceedings of the 4th ACM Conference on Recommender Systems. New York: ACM, 2011 .
[45] Peleja F, Dias P, Martins F, et al.A Recommender System for the TV on the Web: Integrating Unrated Reviews and Movie Ratings[J]. Multimedia Systems, 2013, 19(3): 543-558.
[46] Masthoff J, Gatt A.In Pursuit of Satisfaction and the Prevention of Embarrassment: Affective State in Group Recommender Systems[J]. User Modeling and User-Adapted Interaction, 2006, 16(3): 281-319.
[47] Godoy D, Amandi A.User Profiling for Web Page Filtering[J]. IEEE Internet Computing, 2005, 9(4): 56-64.
[48] McNally K, O’Mahony M P, Smyth B. Personalized Recommender System Based on Social Relations[C]// Proceedings of the 24th Iranian Conference on Electrical Engineering (ICEE). IEEE, 2016: 218-223.
[49] Wei J, He J, Chen K, et al.Collaborative Filtering and Deep Learning Based Recommendation System for Cold Start Items[J]. Expert Systems with Applications, 2016, 69(1): 29-39.
[50] Wei J, He J, Chen K, et al.Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem[C]//Proceedings of the 14th IEEE International Conference on Dependable, Autonomic and Secure Computing. IEEE, 2016: 874-877.
[51] Tomar A, Godin F, Vandersmissen B, et al.Towards Twitter Hashtag Recommendation Using Distributed Word Representations and a Deep Feed Forward Neural Network[C]//Proceedings of the 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI). IEEE, 2014: 362-368.
[52] Nguyen T T, Lauw H W.Representation Learning for Homophilic Preferences[C]//Proceedings of the ACM Conference on Recommender Systems. New York: ACM, 2016: 317-324.
[53] Hidasi B, Quadrana M, Karatzoglou A, et al.Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations[C]//Proceedings of ACM Conference on Recommender Systems. New York: ACM, 2016: 241-248.
[54] Kautz H, Selman B, Mehul S.Combining Social Networks and Collaborative Filtering[J]. Communications of the ACM, 1997, 40(3): 63-65.
[55] 李贺, 袁翠敏, 李亚峰. 基于文献计量的大数据研究综述[J]. 情报科学, 2014, 32(6): 148-155.
[55] (Li He, Yuan Cuimin, Li Yafeng.A Review of Big Data Research Based on Bibliometrics[J]. Information Science, 2014, 32(6): 148-155.)
[56] Callon M, Law J, Rip A.Mapping the Dynamics of Science and Technology [M]. London: The Macmillan Press, 1986: 89-106.
[57] 张勤, 马费成. 国外知识管理研究范式——以共词分析为方法[J]. 管理科学学报, 2007, 12(6): 65-75.
[57] (Zhang Qin, Ma Feicheng.On Paradigm of Research Knowledge Management: A Bibliometric Analysis[J]. Journal of Management Sciences in China, 2007, 12(6): 65-75.)
[58] 钟镇. 知识图谱分析方法的可靠性检验研究——以共词分析为例[J]. 科学学研究, 2015, 33(5): 647-653.
[58] (Zhong Zhen.The Reliability Testing of Knowledge Mapping: Case Study on Co-word Analysis[J]. Studies in Science of Science, 2015, 33(5): 647-653.)
[59] Wang Z, Zhao H, Wang Y.Social Networks in Marketing Research 2001~2014: A Co-word Analysis[J]. Scientmetrics, 2015, 105(1): 65-82.
[60] Ronda-Pupo G A, Guerras-Martin L A. Dynamics of the Evolution of the Strategy Concept 1962-2008: A Co-word Analysis[J]. Strategic Management Journal, 2012, 33(2): 162-188.
[61] Laydesdorff L.On the Normalization and Visualization of Author Co-citation Data: Salton’s Cosine versus the Jaccard Index[J].Journal of the American Society for Information Science and Technology, 2008, 59(1): 77-85.
[62] Worth D.Introduction to Modern Information Retrieval, 3rd Edition[J]. Australian Academic& Research Libraries, 2013, 41(4): 305-306.
[63] 王宗水, 赵红, 刘宇, 等. 社会网络研究范式的演化、发展与应用——基于1998-2014年中国社会科学引文数据分析[J]. 情报学报, 2015, 34(12): 1235-1245.
[63] (Wang Zongshui, Zhao Hong, Liu Yu, et al.Evolution, Development and Application of Social Network Paradigm: Evidence from CSSCI Database of China[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(12): 1235-1245.)
[64] 司守奎, 孙玺菁. 复杂网络算法与应用[M]. 北京: 国防工业出版社, 2016.
[64] (Si Shoukui, Sun Xijing.Complex Network Algorithms and Applications[M]. Beijing: National Defense Industy Press, 2016.)
[65] De Nooy W.Exploratory Social Network Analysis with Pajek: Attributes and Relations [A]//Exploratory Social Network Analysis with Pajek[M]. Oxford City: Cambridge University Press, 2011: 605-608.
[1] Jiang Wu,Guanjun Liu,Xian Hu. An Overview of Online Medical and Health Research: Hot Topics, Theme Evolution and Research Content[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[2] Fen Chen,Xi Fu,Yuan He,Chunxiang Xue. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[3] Zhongyi Wang,Heming Zhang,Jing Huang,Chunya Li. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[4] Xuanhui Zhang,Yuxiang Zhao. Evolution Path and Hot Topics of Citizen Science Studies[J]. 数据分析与知识发现, 2017, 1(7): 22-34.
[5] Chaofan Yang,Zhonghua Deng,Xin Peng,Bin Liu. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[6] Xiwei Wang,Liu Zhang,Shimeng Li,Nan’axue Wang. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[7] Ruxia Fan,Jianxun Zeng,Yaruixi Gao. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[8] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[9] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[10] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[11] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[12] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking ScienceNet.cn Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[13] Zhang Yun, Hua Weina, Yuan Shunbo, Su Baoduo. Research on the Themes Dynamic Evolutions of the Patent Analysis Papers from WoS Database[J]. 现代图书情报技术, 2015, 31(1): 17-23.
[14] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
[15] Huang Wei, Gao Junfeng, Wang Chen, Qi Yue. Research on a Method of Implicit Knowledge Push Service Based on Social Network Analysis[J]. 现代图书情报技术, 2014, 30(2): 48-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn