Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (6): 36-46    DOI: 10.11925/infotech.2096-3467.2017.06.04
Orginal Article Current Issue | Archive | Adv Search |
Clustering and Recommending Users Based on Tags and Relation Network
Huixiang Xiong(),Wuxuan Jiang
School of Information Management, Central China Normal University, Wuhan 430079, China
Download: PDF(1265 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a new model to recommend potential similar users with the help of social tags and relation network. [Methods] First, we explored characteristics of the users’ short or long-term interests based on the social tagging system. Then, we built a user-clustering model using multidimensional scaling method with the tags and relationship data. Finally, we recommended similar users based on the clustering results. The proposed model was examined with Weibo data. [Results] We found that the new model could effectively combine the characteristics of the user’s interests, and then identify the potential similar ones. [Limitations] The sample data does not include everything on user interests. Thus, we only examined the effectiveness of the proposed model with limited data. [Conclusions] The user recommendation model based on static tags and dynamic relational network could improve the personalized recommendation services.

Key wordsSocial Tagging      Tag      Relation Network      User-cluster      Multidimensional Scaling Analysis     
Received: 07 April 2017      Published: 25 August 2017

Cite this article:

Huixiang Xiong,Wuxuan Jiang. Clustering and Recommending Users Based on Tags and Relation Network. Data Analysis and Knowledge Discovery, 2017, 1(6): 36-46.

URL:     OR

[1] 熊回香, 王学东. 大众分类体系中标签概念空间的构建研究[J]. 情报学报, 2012, 31(9): 984-992.
[1] (Xiong Huixiang, Wang Xuedong.Research on Tag Concept Space Construction in Folksonom System[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(9): 984-992.)
[2] 熊回香, 杨雪萍. 社会化标注系统中的个性化信息推荐研究[J]. 情报学报, 2016, 35(5): 549-560.
[2] (Xiong Huixiang, Yang Xueping.Personalized Information Recommendation Research Based on Combined Condition in Folksonomies[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(5): 549-560.)
[3] Arekar T, Sonar M R S, Uke N J. A Survey on Recommendation System[J]. IOSR Journal of Computer Engineering, 2015, 5(1): 1-4.
[4] Adomavicius G, Tuzhilin A.Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(6): 734-749.
[5] 何晓林. 基于用户兴趣学习的个性化信息服务模型研究[D]. 北京: 北京交通大学, 2008.
[5] (He Xiaolin.Research on Personalized Information Service Model Based on User Interest Study[D]. Beijing: Beijing Jiaotong University, 2008.)
[6] 易明, 操玉杰, 沈劲枝, 等. 社会化标签系统中基于密度聚类的Web用户兴趣建模方法[J]. 情报学报, 2011, 30(1): 37-43.
[6] (Yi Ming, Cao Yujie, Shen Jinzhi, et al.An Approach to Web User Interest Modeling Based on Density-based Clustering Algorithm in the Social Tag System[J]. Journal of the China Society for Scientific and Technical Information, 2012, 30(1): 37-43.)
[7] 王向前, 李慧宗. 基于资源内容聚类的社会化标签聚类方法[J]. 情报杂志, 2016, 35(11): 141-145.
[7] (Wang Xiangqian, Li Huizong.A Method of Tag Clustering Based on Resource Contents[J]. Journal of Intelligence, 2016, 35(11): 141-145.)
[8] Shepitsen A, Gemmell J, Mobasher B, et al.Personalized Recommendation in Social Tagging Systems Using Hierarchical Clustering[C]//Proceedings of the 2008 ACM Conference on Recommender Systems, 2008: 259-266.
[9] Gemmell J, Shepitsen A, Mobasher B, et al.Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering[C]//Proceedings of International Conference on Data Warehousing and Knowledge Discovery. Springer Berlin Heidelberg, 2008: 196-205.
[10] 卢小宾, 孟玺, 张进. 基于词共现的社会化标签研究热点可视化分析[J]. 情报学报, 2012, 31(2): 204-212.
[10] (Lu Xiaobin, Meng Xi, Zhang Jin.Visualization of Hot Topics in Social Tagging Based on Co-words Analysis Method[J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(2): 204-212.)
[11] 柴彦. 基于共词聚类分析方法的知识管理国内研究述评[J]. 情报科学, 2015, 33(4): 149-153.
[11] (Chai Yan.Review of Knowledge Management Based on Co-Word Clustering Analysis[J]. Information Science, 2015, 33(4): 149-153.)
[12] Masnick A M, Valenti S S, Cox B D, et al.A Multidimensional Scaling Analysis of Students’ Attitudes about Science Careers[J]. International Journal of Science Education, 2010, 32(5): 653-667.
[13] 黄红霞, 章成志. 中文微博用户标签的调查分析——以新浪微博为例[J]. 现代图书情报技术, 2012(10): 49-54.
[13] (Huang Hongxia, Zhang Chengzhi.Investigation and Analysis of Chinese Microblog UserTags——Using Sina Weibo as Example[J]. New Technology of Library and Information Service, 2012(10): 49-54.)
[14] 薛毅, 陈立萍. 统计建模与R软件[M]. 第1版. 北京: 清华大学出版社, 2007.
[14] (Xue Yi, Chen Liping.Statistical Modeling and R Software[M]. The 1st Edition. Beijing: Tsinghua University Press, 2007.)
[15] Cherven K.Network Graph Analysis and Visualization with Gephi[M]. Packt Publishing, 2013.
[16] 郭婷, 郑颖. 数据挖掘在国内图书情报领域的应用现状分析——基于文献计量分析和共词分析[J]. 情报科学, 2015, 33(10): 91-98.
[16] (Guo Ting, Zheng Ying.Research on the Application of Data Mining in the Field of Library and Information Science in China——Based on Bibliometric Analysis and Co-word Analysis[J]. Information Science, 2015, 33(10): 91-98.)
[17] Wikipedia. Multidimensional Scaling[EB/OL].[2016-11-01]. .
[18] Harrington P.机器学习实战[M]. 曲亚东, 李锐, 王斌等译. 第1版. 北京: 人民邮电出版社, 2013: 184-185.
[18] (Harrington P.Machine Learning in Action[M]. Translated by Qu Yadong, Li Rui, Wang Bin, et al. The 1st Edition. Beijing: Posts & Telecom Press, 2013: 184-185.)
[19] 张宇献, 刘通, 董晓, 等. 基于改进划分系数的模糊聚类有效性函数[J]. 沈阳工业大学学报, 2014, 36(4): 431-435.
[19] (Zhang Yuxian, Liu Tong, Dong Xiao, et al.Validity Function for Fuzzy Clustering Based on Improved Partition Coefficient[J]. Journal of Shenyang University of Technology, 2014, 36(4): 431-435.)
[20] 朱连江, 马炳先, 赵学泉. 基于轮廓系数的聚类有效性分析[J]. 计算机应用, 2010, 30(S2): 139-141.
[20] (Zhu Lianjiang, Ma Bingxian, Zhao Xuequan.Clustering Validity Analysis Based on Silhouette Coefficient[J]. Journal of Computer Applications, 2010, 30(S2): 139-141.)
[1] Lixin Xia,Jieyan Zeng,Chongwu Bi,Guanghui Ye. Identifying Hierarchy Evolution of User Interests with LDA Topic Model[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[3] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[4] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[5] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[6] Huixiang Xiong,Jiaxin Ye,Wuxuan Jiang. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[7] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[8] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[9] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[10] Mengyao Xie,Xuwei Pan. Constructing Dynamic Social Tag Cloud for User Interests[J]. 数据分析与知识发现, 2017, 1(2): 35-40.
[11] Bo Guo,Shouguang Li,Hao Wang,Xiaojun Zhang,Wei Gong,Zhaojun Yu,Yu Sun. Examining Product Reviews with Sentiment Analysis and Opinion Mining[J]. 数据分析与知识发现, 2017, 1(12): 1-9.
[12] Zhu Ling,Xue Chunxiang,Zhang Chengzhi,Fu Zhu. User Tags and Microblog Posts: Case Study of Sina Weibo[J]. 现代图书情报技术, 2016, 32(3): 18-24.
[13] Wang Zhongqun, Jiang Sheng, Xiu Yu, Huang Subin, Wang Qiansong. Information Resource Recommendation Method Based on Dynamic Tag-Resource Network[J]. 现代图书情报技术, 2015, 31(3): 49-57.
[14] Wu Wankun, Wu Qinglie, Gu Jinjiang. Hot Topic Extraction from E-commerce Microblog Based on EM-LDA Integrated Model[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[15] Zhang Chengzhi, Li Lei. Automatic Quality Evaluation of Social Tags[J]. 现代图书情报技术, 2015, 31(10): 2-12.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938