Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (8): 59-67    DOI: 10.11925/infotech.2096-3467.2017.08.07
Orginal Article Current Issue | Archive | Adv Search |
Evaluating Business Reputation with E-Commerce Comments
Yu Wang(),Xiuxiu Li
Faculty of Management and Economics, Dalian University of Technology, Dalian 116024, China
Download: PDF(1390 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a new method to evaluate business reputation based on e-commerce comments. [Methods] First, we modified the key word extraction and clustering algorithm based on the HNC theory and text mining methods. Then, we extracted the cluster labels and calculated the weight of each cluster of the collected comments. [Results] We established a business reputation dimension system, with cellphone users’ reviews posted on the Jingdong Online Shopping Platform. [Limitations] Some of the word symbols were generated manually due to the incomplete HNC thesaurus, which posed negative effects to larger-scale comments analysis. [Conclusions] The business reputation evaluation system can identify the commodity features that users really care about.

Key wordsComment Texts      Topic Words Clustering      Reputation Dimension      E-Commerce     
Received: 27 May 2017      Published: 28 September 2017

Cite this article:

Yu Wang,Xiuxiu Li. Evaluating Business Reputation with E-Commerce Comments. Data Analysis and Knowledge Discovery, 2017, 1(8): 59-67.

URL:     OR

[1] 艾瑞咨询. 2016年第三季度电子商务核心数据发布[EB/ OL]. [2017-04-12]. .
[1] (IResearch. The 3rd Quarter of 2016 E-commerce Core Data Release [EB/OL]. [2017-04-12].
[2] 中文互联网数据资讯中心. 2016年全球互联网、社交媒体、移动设备普及情况报告[EB/OL]. [2017-04-12]. .
[2] (Chinese Internet Data Center. 2016 Global Internet, Social Media, Mobile Device Popularity Report [EB/OL]. [2017-04-12].
[3] 鲁文. 社会化电子商务在线信誉的模型构建及实证研究[D]. 沈阳: 沈阳工业大学, 2015.
[3] (Lu Wen.Model Construction and Empirical Study on Online Reputation of Social Commerce [D]. Shenyang: Shenyang University of Technology, 2015.)
[4] 茹永梅. 基于模糊理论的O2O模式商家信誉评估模型[J]. 西安邮电大学学报, 2016, 21(3): 120-126.
[4] (Ru Yongmei.Reputation Evaluation Model for O2O Mode Businesses Based on Fuzzy Theory[J]. Journal of Xi’an University of Posts and Telecommunications, 2016, 21(3): 120-126.)
[5] 吴维芳, 高宝俊, 杨海霞, 等. 评论文本对酒店满意度的影响: 基于情感分析的方法[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
[5] (Wu Weifang, Gao Baojun, Yang Haixia, et al.The Impacts of Reviews on Hotel Satisfaction: A Sentiment Analysis Method[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 62-71.)
[6] 赵学锋, 陈传红, 陈获帆, 等. 基于文本聚类的电子零售商信誉维度发现研究[J]. 情报学报, 2011, 30(1): 63-75.
[6] (Zhao Xuefeng, Chen Chuanhong, Chen Huofan, et al.Study on the Discovery of Reputation Dimension of Online Merchants Based on Text-clustering[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(1): 63-75.)
[7] 赵学锋, 汤庆, 张睿, 等. 基于客户评论和语料库的在线酒店信誉维度挖掘[J]. 图书情报工作, 2012, 56(12): 124-129.
[7] (Zhao Xuefeng, Tang Qing, Zhang Rui, et al.Exploration of Dimensions of the Online Hotel Reputation Based on Customers’ Text Comments and Corpus[J]. Library and Information Service, 2012, 56(12): 124-129.)
[8] 黄曾阳. HNC(概念层次网络)理论—计算机理解语言研究的新思路[M]. 北京: 清华大学出版社, 1998.
[8] (Huang Zengyang.HNC(Hierarchical Network of Concepts) —A New Approach to Computer Understanding Language Research [M]. Beijing: Tsinghua University Press, 1998.)
[9] Jiang M, Yan W, Wang X, et al.Wikipedia Based Approach for Clustering Keyword of Reviews[J]. Journal of Software, 2014, 9(9): 2246-2250.
[10] 耿焕同, 蔡庆生, 于琨, 等. 一种基于词共现图的文档主题词自动抽取方法[J]. 南京大学学报, 2006, 42(2): 156-162.
[10] (Geng Huantong, Cai Qingsheng, Yu Kun, et al.A Kind of Automatic Text Keyphrase Extraction Method Based on Word Co-occurrence[J]. Journal of Nanjing University, 2006, 42(2): 156-162.)
[11] 陈炯, 张永奎. 一种基于词聚类的中文文本主题抽取方法[J]. 计算机应用, 2005, 25(4): 754-756.
[11] (Chen Jiong, Zhang Yongkui.Novel Chinese Text Subject Extraction Method Based on Word Clustering[J]. Computer Applications, 2005, 25(4): 754-756.)
[12] 晋耀红. HNC(概念层次网络)语言理解技术及其应用[M]. 北京: 科学出版社, 2006.
[12] (Jin Yaohong.HNC (Hierarchical Network of Concepts) Language Understanding Technology and Its Applications[M]. Beijing: Science Press, 2006.)
[13] 苗传江. HNC(概念层次网络)理论导论[M]. 北京: 清华大学出版社, 2005.
[13] (Miao Chuanjiang.HNC (Hierarchical Network of Concepts) Introduction to the Theory [M]. Beijing: Tsinghua University Press, 2005.)
[14] 吴佐衍, 王宇. 基于HNC理论的词语相似度计算[J]. 中文信息学报, 2014, 28(2): 37-43.
[14] (Wu Zuoyan, Wang Yu.A New Measure of Semantic Similarity Based on Hierarchical Network of Concepts[J]. Journal of Chinese Information Processing, 2014, 28(2): 37-43.)
[15] 魏桂英, 郑玄轩. 层次聚类方法的CURE算法研究[J]. 科技和产业, 2005, 5(11): 24-26.
[15] (Wei Guiying, Zheng Xuanxuan.Research on CURE Algorithm of Hierarchical Clustering Method[J]. Science Technology and Industry, 2005, 5(11): 24-26.)
[16] 邵洪雨. 短文本聚类及聚类结果描述方法研究[D]. 大连: 大连理工大学, 2014.
[16] (Shao Hongyu.Research on Short Text Clustering and Cluster Description Method [D]. Dalian: Dalian University of Technology, 2014.)
[17] 夏天. 词向量聚类加权TextRank的关键词抽取[J]. 数据分析与知识发现, 2017, 1(2): 28-34.
[17] (Xia Tian.Extracting Keywords with Modified TextRank Model[J]. Data Analysis and Knowledge Discovery, 2017, 1(2): 28-34.)
[18] 陈毅恒. 文本检索结果聚类及类别标签抽取技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[18] (Chen Yiheng.Research on Text Retrieval Results Clustering and Label Extraction[D]. Harbin: Harbin Institute of Technology, 2010.)
[1] Xiaofeng Li,Jing Ma,Chi Li,Hengmin Zhu. Identifying Commodity Names Based on XGBoost Model[J]. 数据分析与知识发现, 2019, 3(7): 34-41.
[2] Chuanming Yu,Yajing Guo,Yutian Gong,Manyu Huang,Hufeng Peng. Evolution and Regional Differences of E-commerce Policies for Rural Poverty Reduction Based on Topic over Time Model[J]. 数据分析与知识发现, 2018, 2(7): 34-45.
[3] Fuliang Xue,Junling Liu. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[4] Peng Zhu, Xiaoxiao Zhao, Wei Wu. Factors Influencing Mobile E-commerce Consumers’ Preferences: An Empirical Study[J]. 数据分析与知识发现, 2017, 1(3): 1-9.
[5] Liu Honglian,Zhang Pengyi,Wang Jun. Multi-session Product Information Seeking Behaviors, Motivation, and Influencing Factors[J]. 现代图书情报技术, 2016, 32(4): 1-7.
[6] Yuan Xingfu, Zhang Pengyi, Wang Jun. “State-Behavior” Modeling and Its Application in Analyzing Product Information Seeking Behavior of E-commerce Websites Users[J]. 现代图书情报技术, 2015, 31(6): 93-100.
[7] Zhang Wenjun, Wang Jun, Xu Shanchuan. The Probing of E-commerce User Need States by Page Cluster Analysis ——An Empirical Study on Women's Clothes from[J]. 现代图书情报技术, 2015, 31(3): 67-74.
[8] Wu Wankun, Wu Qinglie, Gu Jinjiang. Hot Topic Extraction from E-commerce Microblog Based on EM-LDA Integrated Model[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[9] Gao Jinsong, Liang Yanqi, Li Ke, Xiao Lian, Zhou Ximan. E-commerce Credit Information Service Model for Linked Data[J]. 现代图书情报技术, 2014, 30(6): 8-16.
[10] Li Hui, Liu Dongsu. E-Commerce Reputation Model Based on Elimination Differences of User Subjective Evaluation[J]. 现代图书情报技术, 2012, 28(2): 48-52.
[11] Li Cong. Review of Scalability Problem in E-commerce Collaborative Filtering[J]. 现代图书情报技术, 2010, 26(11): 37-41.
[12] Li Cong. ECRec:e-Commerce Personalized Recommendation Management Based on Collaborative Filtering[J]. 现代图书情报技术, 2009, (10): 34-39.
[13] Li Gang,An Lu. Clustering Analysis of E-commerce Transactions with Self-Organizing Map[J]. 现代图书情报技术, 2008, 24(9): 70-77.
[14] Ma Li. An Improved Item-based Collaborative Filtering Algorithm Based on Compound Weighted Rating[J]. 现代图书情报技术, 2008, 24(11): 60-64.
[15] Li Hui,Liu Dongsu. An Efficient Approach for Evaluating Trust in E-Commerce[J]. 现代图书情报技术, 2008, 24(10): 38-42.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938