Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (12): 74-83    DOI: 10.11925/infotech.2096-3467.2017.0866
Orginal Article Current Issue | Archive | Adv Search |
Identifying Useful Online Reviews with Semantic Feature Extraction
Yanfeng Zhang(),He Li,Lihui Peng,Litie Hou
School of Management, Jilin University, Changchun 130022, China
Download: PDF(997 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] We propose a model to identify useful online Chinese reviews, which helps consumers make purchasing decisions. [Methods] First, we calculated six attributes affecting the usefulness of online reviews based on their form and content characteristics. Then, we constructed a usefulness evaluation system with the weighted grey relational degree analysis method. Finally, we created a model to retrieve useful online reviews with k-means clustering method. [Results] We examined the effectiveness of our model with online reviews from The recall, precision and F values showed that our method could effectively identify the useful online reviews, and classify the polarity ones. [Limitations] The samples, metrics and e-commerce platforms could be further improved. [Conclusions] The proposed method could rank and classify online reviews accurately and reliably.

Key wordsWeighted Grey Relational Degree      Online Reviews      Classification Model      Usefulness     
Received: 28 August 2017      Published: 29 December 2017

Cite this article:

Yanfeng Zhang,He Li,Lihui Peng,Litie Hou. Identifying Useful Online Reviews with Semantic Feature Extraction. Data Analysis and Knowledge Discovery, 2017, 1(12): 74-83.

URL:     OR

[1] Ngo-Ye T L, Sinha A P. The Influence of Reviewer Engagement Characteristics on Online Review Helpfulness: A Text Regression Model[J]. Decision Support Systems, 2014, 61(4): 47-58.
[2] Huang A H, Chen K, Yen D C, et al.A Study of Factors that Contribute to Online Review Helpfulness[J]. Computers in Human Behavior, 2015, 48(C): 17-27.
[3] Agnihotri A, Bhattacharya S.Online Review Helpfulness: Role of Qualitative Factors[J]. Psychology & Marketing, 2016, 33(11): 1006-1017.
[4] Chua A Y K, Banerjee S. Helpfulness of User-generated Reviews as a Function of Review Sentiment, Product Type and Information Quality[J]. Computers in Human Behavior, 2016, 54(C): 547-554.
[5] 李启庚, 赵晓虹, 何耀宇. 在线评论信息感知有用性影响因素实证研究——以服务型产品为例[J]. 情报理论与实践, 2017, 40(8): 122-125.
[5] (Li Qigeng, Zhao Xiaohong, He Yaoyu.An Empirical Study of Influencing Factors of Perceived Usefulness of Online Review[J]. Information Studies: Theory & Application, 2017, 40(8): 122-125.)
[6] 张艳辉, 李宗伟, 赵诣成. 基于淘宝网评论数据的信息质量对在线评论有用性的影响[J]. 管理学报, 2017, 14(1): 77-85.
[6] (Zhang Yanhui, Li Zongwei, Zhao Yicheng.How the Information Quality Affects the Online Review Usefulness? ——An Empirical Analysis Based on Taobao Review Data[J]. Chinese Journal of Management, 2017, 14(1): 77-85.)
[7] 刘杰, 付晓东, 刘骊, 等. 热门B2C购物门户用户评论质量影响因素分析研究[J]. 计算机应用与软件, 2017, 34(3): 71-75, 97.
[7] (Liu Jie, Fu Xiaodong, Liu Li, et al.Analysis on Popular B2C Shopping Site[J]. Computer Applications and Software, 2017, 34(3): 71-75, 97.)
[8] Jindal N, Liu B.Opinion Spam and Analysis[C]//Proceedings of International Conference on Web Search and Web Data Mining, Califormia, USA. New York, NY, USA: ACM, 2008: 219-229.
[9] Krishnamoorthy S.Linguistic Features for Review Helpfulness Prediction[M]. Pergamon Press, Inc., 2015.
[10] Ngo-Ye T L, Sinha A P, Sen A. Predicting the Helpfulness of Online Reviews Using a Scripts-Enriched Text Regression Model[J]. Expert Systems with Applications, 2016, 71(11): 98-110.
[11] 孟园, 王洪伟. 基于文本内容特征选择的评论质量检测[J]. 现代图书情报技术, 2016(4): 40-47.
[11] (Meng Yuan, Wang Hongwei.Evaluating Online Reviews Based on Text Content Features[J]. New Technology of Library and Information Service, 2016(4): 40-47.)
[12] 赵军, 王红. 融合情感极性和逻辑回归的虚假评论检测方法[J]. 智能系统学报, 2016, 11(3): 336-342.
[12] (Zhao Jun, Wang Hong.Detection of Fake Reviews Based on Emotional Orientation and Logistic Regression[J]. CAAI Transactions on Intelligent Systems, 2016, 11(3): 336-342.)
[13] Clemons E K, Gao G D, Hitt L M.When Online Reviews Meet Hyper Differentiation: A Study of the Craft Beer Industry[J]. Journal of Management Information Systems, 2006, 23(2): 149-171.
[14] 郭顺利, 张向先, 李中梅. 面向用户信息需求的移动O2O在线评论有用性排序模型研究——以美团为例[J]. 图书情报工作, 2015, 59(12): 85-93.
[14] (Guo Shunli, Zhang Xiangxian, Li Zhongmei.Study on the Usefulness Ranking Model of Mobile O2O Online Reviews from the Perspective of User’s Information Demand: Taking an Example of Meituan[J]. Library and Information Service, 2015, 59(12): 85-93.)
[15] 张艳丰, 李贺, 翟倩, 等. 基于模糊TOPSIS分析的在线评论有用性排序过滤模型研究——以亚马逊手机评论为例[J]. 图书情报工作, 2016, 60(13): 109-117, 125.
[15] (Zhang Yanfeng, Li He, Zhai Qian, et al.Research on the Usefulness of Online Review Based on Fuzzy TOPSIS Analysis: A Case Study of Amazon’s Mobile Phone Review[J]. Library and Information Service, 2016, 60(13): 109-117,125.)
[16] Zhang Z.Weighing Stars: Aggregating Online Product Reviews for Intelligent E-commerce Applications[J]. IEEE Intelligent Systems, 2008, 23(5): 42-49.
[17] Zhang K, Cheng Y, Liao W, et al.Mining Millions of Reviews: A Technique to Rank Products Based on Importance of Reviews[C]//Proceedings of the 13th International Conference on Electronic Commerce. New York, USA: ACM, 2011: 1-8.
[18] HowNet [EB/OL]. [2017-03-18]. .
[19] 数据堂. 台湾大学NTUSD-简体中文情感极性词典[EB/OL]. [2017-03-18]. .
[19] (Data Tang. Taiwan University-The Polarity of Simplified Chinese Emotional Dictionary [EB/OL]. [2017-03-18].
[20] 梁樑, 盛昭翰, 徐南荣. 一种改进的层次分析法[J]. 系统工程, 1989(3): 5-7.
[20] (Liang Liang, Sheng Zhaohan, Xu Nanrong.An Improved Analytic Hierarchy Process[J]. Systems Engineering, 1989(3): 5-7.)
[21] 潘吟, 吴望名. 反对称阵的最优传递阵[J]. 数学的实践与认识, 1988(2): 44-50.
[21] (Pan Yin, Wu Wangming.The Optimal Transitive Matrix of Antisymmetric Matrices[J]. Mathematics in Practice and Theory, 1988(2): 44-50.)
[22] 卓金武, 魏永生, 秦健, 等. MATLAB在数学建模中的应用[M]. 第2版. 北京: 北京航空航天大学出版社, 2014.
[22] (Zhuo Jinwu, Wei Yongsheng, Qin Jian, et al.The Application of MATLAB in Mathematical Modeling [M]. The 2nd Edition. Beijing: Beihang University Press, 2014.)
[23] GooSeeker. MetaSeeker [EB/OL]. [2017-03-25]. .
[24] 敦欣卉, 张云秋, 杨铠西. 基于微博的细粒度情感分析[J]. 数据分析与知识发现, 2017, 1(7): 61-72.
[24] (Dun Xinhui, Zhang Yunqiu, Yang Kaixi.Fine-grained Sentiment Analysis Based on Weibo[J]. Data Analysis and Knowledge Discovery, 2017, 1(7): 61-72.)
[25] Li G, Hoi S C H, Chang K, et al. Microblogging Sentiment Detection by Collaborative Online Learning[C]//Proceedings of the 2010 IEEE International Conference on Data Mining, Sydney, Australia. USA: IEEE, 2010: 893-898.
[26] 王倩倩. 一种在线商品评论信息可信度的排序方法[J]. 情报杂志, 2015, 34(3): 181-185.
[26] (Wang Qianqian.Information Credibility of Online Reviews: A New Ranking Method[J]. Journal of Intelligence, 2015, 34(3): 181-185.)
[27] 蔡晓珍, 徐健, 吴思竹. 面向情感分析的用户评论过滤模型研究[J]. 现代图书情报技术, 2014 (4): 58-64.
[27] (Cai Xiaozhen, Xu Jian, Wu Sizhu.Research on Filter Model of Customer Review for Sentiment Analysis[J]. New Technology of Library and Information Service, 2014(4): 58-64.)
[1] Hui Li,Yunfeng Hu. Analyzing Online Reviews with Dynamic Sentiment Topic Model[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
[2] Zhang Yanfeng,Li He,Peng Lihui. Research on the Brand Switching Intention of Online Product Reviews Based on the Fuzzy Sentiment Calculation[J]. 现代图书情报技术, 2016, 32(5): 64-71.
[3] Gao Song,Wang Hongwei,Feng Gang,Wang Wei. Review of Comparative Opinions Mining Studies of Online Comments[J]. 现代图书情报技术, 2016, 32(10): 1-12.
[4] Li Chuanxi, Zhang Zhixiong, Liu Jianhua, Qian Li. A Semi-supervised Web Scientific and Technical Information Classification Model[J]. 现代图书情报技术, 2014, 30(11): 53-58.
[5] Li Zhiyu. Study on the Reviews Effectiveness Sequencing Model of Online Products[J]. 现代图书情报技术, 2013, (4): 62-68.
[6] Zhang Hongbin, Li Guangli. Research on Sentiment Orientation Analysis of Product Online Reviews[J]. 现代图书情报技术, 2012, (10): 61-66.
[7] Hu Zewen, Wang Xiaoyue, Bai Rujiang. Study on Text Classification Model Based on SUMO and WordNet Ontology Integration[J]. 现代图书情报技术, 2011, 27(1): 31-38.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938