Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (2): 46-57    DOI: 10.11925/infotech.2096-3467.2017.0898
Current Issue | Archive | Adv Search |
Analyzing Information Dissemination on Social Networks
Ling Zhang1(),Manman Luo1,Lijun Zhu2
1(School of Management, Wuhan University of Science and Technology, Wuhan 430081, China)
2(Institute of Scientific and Technical Information of China, Beijing 100038, China)
Download: PDF(4324 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This study analyzes the dissemination of marketing information on social network systems, aiming to identify the most influential nodes. [Methods] We collected Twitter data on Huawei Mate 9 smartphone to analyze users’ information behaviors like tweeting, retweeting and commenting. First, the network topology was described as topology structure diagram; Second, we examined scales of the network; Finally, we used independent cascade model (ICM) to simulate information dissemination. [Results] We found that initial active nodes selection based on the new measurements performed well. [Limitations] The parameters of ICM could be optimized. [Conclusions] The enterprises should pay attention to both official and accidental nodes to retrieve feedback from the market.

Key wordsSocial Network      Information Propagation      Independent Cascade Model     
Received: 07 September 2017      Published: 07 March 2018

Cite this article:

Ling Zhang,Manman Luo,Lijun Zhu. Analyzing Information Dissemination on Social Networks. Data Analysis and Knowledge Discovery, 2018, 2(2): 46-57.

URL:     OR

[1] Milgram S.The Small-World Problem[J]. Psychology Today, 1967, 1(1): 61-67.
[2] 王萍. 社会化网络的信息扩散研究[J]. 情报杂志, 2009, 28(10): 39-42.
[2] (Wang Ping.Study of Information Diffusion in Social Networks[J]. Journal of Intelligence, 2009, 28(10): 39-42.)
[3] Even-Dar E, Shapira A.A Note on Maximizing the Spread of Influence in Social Networks[C] // Proceedings of International Workshop on Web and Internet Economics (WINE 2007: Internet and Network Economics). Springer Berlin Heidelberg, 2007: 281-286.
[4] Goldenberg J, Libai B, Muller E.Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth[J]. Marketing Letters, 2001, 12(3): 211-223.
[5] Granovetter M.Threshold Models of Collective Behavior[J]. American Journal of Sociology, 1978, 83(6): 1420-1443.
[6] Hethcote H W.The Mathematics of Infectious Diseases[J]. SIAM Review, 2000, 42(4): 599-653.
[7] 彭慧洁, 朱君璇. 微信网络的信息传播模型研究[J]. 现代情报, 2016, 36(11): 37-42.
[7] (Peng Huijie, Zhu Junxuan.Research on Information Dissemination Model in WeChat Network[J]. Journal of Modern Information, 2016, 36(11): 37-42.)
[8] 刘东亮, 黄颖, 毛海宇, 等. 基于社交网络的信息传播机制研究[J]. 情报科学, 2015, 33(8): 30-34.
[8] (Liu Dongliang, Huang Ying, Mao Haiyu, et al.Study of Information Broadcasting Mechanism Based on Social Network[J]. Information Science, 2015, 33(8): 30-34.)
[9] 杨帅帅. 信息扩散最大化问题的新优化算法[D]. 广州: 华南理工大学, 2016.
[9] (Yang Shuaishuai.New Optimal Algorithm on Information Diffusion Maximization Problem [D]. Guangzhou: South China University of Technology, 2016.)
[10] 李亚娇. 在线社交网络中知识扩散的模式研究[D].扬州: 扬州大学, 2016.
[10] (Li Yajiao.Research on Knowledge Diffusion Patterns in Online Social Networks[D].Yangzhou: Yangzhou University, 2016.)
[11] Akrouf S, Meriem L, Yahia B, et al.Social Network Analysis and Information Propagation: A Case Study Using Flickr and Youtube Networks[J]. International Journal of Future Computer and Communication, 2013, 2(3): 246-252.
[12] 李隆. 社交网络影响力最大化的多目标优化方法研究[D]. 合肥: 合肥工业大学, 2016.
[12] (Li Long.An Multi-Objective Optimization Method of Influence Maximization in Social Networks[D]. Hefei: Hefei University of Technology, 2016.)
[13] 刘晓芳, 秦江涛. 基于Twitter 的信息传播仿真研究[J]. 科技与管理, 2014, 16(2): 49-52.
[13] (Liu Xiaofang, Qin Jiangtao.Simulation of Information Diffusion on Twitter[J]. Science-Technology and Management, 2014, 16(2): 49-52.)
[14] Kleinberg J M.Authoritative Sources in a Hyperlinked Environment[C]// Proceedings of the ACM-SIAM Symposium on Discrete Algorithms. 1998.
[15] Page L, Brin S, Motwani R, et al.The PageRank Citation Ranking: Bringing Order to the Web[R]. Stanford InfoLab, 1999.
[16] Smith M A, Shneiderman B, Milic-Frayling N, et al.Analyzing (Social Media) Networks with NodeXL[C]// Proceedings of the 4th International Conference on Communities and Technologies, Pennsylvania,USA. 2009: 255-264.
[17] Batabasi A L, Albert R, Jeong H.Meanfield Theory for Scalefree Random Networks[J]. Physica A: Statistical Mechanics and Its Applications, 1999, 272(1-2): 173-187.
[18] Albert R, Jeong H, Barabasi A L.Diameter of the World Wide Web[J]. Nature, 1999, 401: 130-131.
[19] Durrett R.Lecture Notes on Particle Systems and Percolation[M]. Brooks/Cole Pub Co., 1988.
[20] Brandes U.A Faster Algorithm for Betweenness Centrality[J]. Journal of Mathematical Sociology, 2001, 25(2): 163-177.
[21] Kwak H, Lee C, Park H, et al.What is Twitter, a Social Network or a News Media?[C]//Proceedings of the 19th International Conference of World Wide Web (WWW 2010), Raleigh, USA.2010: 591-600.
[22] Weng J, Lim E P, Jiang J, et al.TwitterRank: Finding Topic-sensitive Influential Twitterers[C]//Proceedings of the 3rd ACM International Conference on Web Search and Data Mining (WSDM 2010), New York, USA. 2010: 261-270.
[1] Liqing Qiu,Wei Jia,Xin Fan. Influence Maximization Algorithm Based on Overlapping Community[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[2] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[3] Jiehua Wu,Jing Shen,Bei Zhou. Classifying Multilayer Social Network Links Based on Transfer Component Analysis[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[4] Guanghui Ye,Jinglan Hu,Jian Xu,Lixin Xia. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[5] Bo Guo,Junrui Zhao,Yu Sun. Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[6] Feifei Wang,Shengtai Zhang. Analyzing Information Behaviors of Mobile Social Network Users[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[7] Fen Chen,Xi Fu,Yuan He,Chunxiang Xue. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[8] Gang Li,Xiao Wang,Yang Guo. Detecting Relationship Among WeChat Group Members with Co-occurrence of Cooperation[J]. 数据分析与知识发现, 2018, 2(11): 54-63.
[9] Zhongyi Wang,Heming Zhang,Jing Huang,Chunya Li. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[10] Zhen Li,Shengchun Ding,Nan Wang. Identifying Topics of Online Public Opinion[J]. 数据分析与知识发现, 2017, 1(8): 18-30.
[11] Fei Li,Jian Zhang,Zongshui Wang. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[12] Xiwei Wang,Liu Zhang,Shimeng Li,Nan’axue Wang. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[13] Ruxia Fan,Jianxun Zeng,Yaruixi Gao. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[14] Jin Zeng,Wei Lu,Heng Ding,Haihua Chen. Modeling User’s Interests Based on Image Semantics[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[15] Guanghui Ye, Lixin Xia. Review of Expert Retrieval and Expert Ranking Studies[J]. 数据分析与知识发现, 2017, 1(2): 1-10.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938