Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (9): 49-56    DOI: 10.11925/infotech.2096-3467.2017.09.05
Orginal Article Current Issue | Archive | Adv Search |
Detecting Community in Scientific Collaboration Network with Bayesian Symmetric NMF
Xiaohua Shi1,2(),Hongtao Lu2
1Library of Shanghai Jiaotong University, Shanghai 200240, China
2Computer Science Department, Shanghai Jiaotong University, Shanghai 200240, China
Download: PDF(2845 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This study proposes and examines a new method to identify the communities in collaboration network of scientific researchers. [Methods] First, we retrieved the need data from information science journal articles published from 2012 to 2016. Then, we used the Automatic Relevance Determination to find the target community with the Bayesian Symmetric Non-negative Matrix Factorization method. Finally, we compared the performance of our method with the existing ones. [Results] The proposed method got better results than others. [Limitations] Did not optimize our data with the researcher identifications. [Conclusions] The proposed method could effectively find communities from the scientific collaboration network.

Key wordsScientific Network      Co-author Network      Community Detection      Non-negative Matrix Factorization      Bayesian Approach     
Received: 10 April 2017      Published: 18 October 2017

Cite this article:

Xiaohua Shi,Hongtao Lu. Detecting Community in Scientific Collaboration Network with Bayesian Symmetric NMF. Data Analysis and Knowledge Discovery, 2017, 1(9): 49-56.

URL:     OR

[1] Ding Y.Community Detection: Topological vs. Topical[J]. Journal of Informetrics, 2011, 5(4): 498-514.
[2] Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69: Article No. 026113.
[3] Tang X, Xu T, Feng al. Uncovering Community Structures with Initialized Bayesian Nonnegative Matrix Factorization[J]. PLoS ONE, 2014, 9(12): Article No. e107884.
[4] 徐玲, 胡海波, 汪小帆. 一个中国科学家合作网的实证分析[J]. 复杂系统与复杂性科学, 2009, 6(1): 20-28.
[4] (Xu Ling, Hu Haibo, Wang Xiaofan.Empirical Analysis of a China Scientists Collaboration Network[J], Complex System and Complexity Science, 2009, 6(1): 20-28.)
[5] Bailón-Moreno R, Jurado-Alameda E, Ruiz-Ba?os R.The Scientific Network of Surfactants: Structural Analysis[J]. Journal of the American Society for Information Science and Technology, 2006, 57(7): 949-960.
[6] Quattrociocchi W, Amblard F, Galeota E.Selection in Scientific Networks[J]. Social Network Analysis and Mining, 2012, 2(3): 229-237.
[7] Havemann F, Scharnhorst A.Bibliometric Networks[OL]. arXiv PrePrint, arXiv: 1212.5211.
[8] Chen P, Redner S.Community Structure of the Physical Review Citation Network[J]. Journal of Informetrics, 2010, 4(3): 278-290.
[9] 马瑞敏, 倪超群. 作者耦合分析; 一种新学科知识结构发现方法的探索性研究[J]. 中国图书馆学报, 2012, 38(2): 4-11.
[9] (Ma Ruimin, Ni Chaoqun.Author Coupling Analysis: An Exploratory Study on a New Approach to Discover Intellectual Structure of a Discipline[J]. Journal of Library Science in China, 2012, 38(2): 4-11.)
[10] 张斌. 共词网络的结构与演化: 概念与理论进展[J]. 情报杂志, 2014, 33(7): 103-109.
[10] (Zhang Bin.Structure and Evolution of Co-word Network: Concept and Research Review[J]. Journal of Intelligence, 2014, 33(7): 103-109.)
[11] 苗蕊, 刘鲁. 科学家合作网络中的社区发现[J]. 情报学报, 2011, 30(12): 1312-1318.
[11] (Miao Rui, Liu Lu.Community Detection in Scientific Collabration Network[J]. Journal of the China Society for Science and Technical Information, 2011, 30(12): 1312-1318.)
[12] Newman M E J. Coauthorship Networks and Patterns of Scientific Collaboration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(S1): 5200-5205.
[13] 王福生, 杨洪勇. 作者科研合作网络模型与实证研究[J]. 图书情报工作, 2007, 51(10): 68-71.
[13] (Wang Fusheng, Yang Hongyong.Author Collaboration Network Model and Demonstration Study[J]. Library and Information Service, 2007, 51(10): 68-71.)
[14] Mimno D.Community-based Link Prediction with Text[C]// Proceedings of the 21st Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada. 2007.
[15] Erfanmanesh M, Rohani V A, Abrizah A.Co-authorship Network of Scientometrics Research Collaboration[J]. Malaysian Journal of Library & Information Science, 2012, 17(3): 73-93.
[16] Fortunato S.Community Detection in Graphs[J]. Physics Reports, 2010, 486(3): 75-174.
[17] Palla G, Derényi I, Farkas I, et al.Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society[J]. Nature, 2005, 435(7043): 814-818.
[18] Blondel V D, Guillaume J L, Lambiotte R, et al.Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): P10008.
[19] Newman M E J. Modularity and Community Structure in Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582.
[20] Le Martelot E, Hankin C.Fast Multi-scale Detection of Relevant Communities in Large-scale Networks[J]. The Computer Journal, 2013. DOI: 10.1093/comjnl/bxt002.
[21] Lee D D, Seung H S.Learning the Parts of Objects by Non- negative Matrix Factorization[J]. Nature, 1999, 401(6755): 788-791.
[22] 李亚芳, 贾彩燕, 于剑. 应用非负矩阵分解模型的社区发现方法综述[J]. 计算机科学与探索, 2016, 10(1): 1-13.
[22] (Li Yafang, Jia Caiyan, Yu Jian.Survey on Community Detection Algorithms Using Nonnegative Matrix Factorization Model[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(1): 1-13.)
[23] Wang F, Li T, Wang X, et al.Community Discovery Using Nonnegative Matrix Factorization[J]. Data Mining and Knowledge Discovery, 2011, 22(3): 493-521.
[24] Zhang Y, Yeung D Y.Overlapping Community Detection via Bounded Nonnegative Matrix Tri-factorization[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012: 606-614.
[25] Mankad S, Michailidis G.Structural and Functional Discovery in Dynamic Networks with Non-negative Matrix Factorization[J]. Physical Review E, 2013, 88(4): 042812.
[26] Yang J, Leskovec J.Overlapping Community Detection at Scale: A Nonnegative Matrix Factorization Approach[C]// Proceedings of the 6th ACM International Conference on Web Search and Data Mining. ACM, 2013: 587-596.
[27] Xie J, Kelley S, Szymanski B K.Overlapping Community Detection in Networks: The State-of-the-Art and Comparative Study[J]. ACM Computing Surveys, 2013, 45(4): 43.
[28] Psorakis I, Roberts S, Ebden M, et al.Overlapping Community Detection Using Bayesian Non-negative Matrix Factorization[J]. Physical Review E, 2011, 83(6): 066114.)
[29] Shi X, Lu H.Community Inference with Bayesian Non-negative Matrix Factorization[A]// Web Technologies and Applications[M]. Springer International Publishing, 2016: 208-219.
[30] M?rup M, Hansen L K.Automatic Relevance Determination for Multi-way Models[J]. Journal of Chemometrics, 2009, 23(7-8): 352-363.
[31] RSS-CNKI [EB/OL]. [2017-03-06]. .
[32] Tang J, Fong A C M, Wang B, et al. A Unified Probabilistic Framework for Name Disambiguation in Digital Library[J]. IEEE Transaction on Knowledge and Data Engineering, 2012, 24(6): 975-987.
[1] Chen Dongyi,Zhou Zicheng,Jiang Shengyi,Wang Lianxi,Wu Jialin. A Framework for Customer Segmentation on Enterprises’ Microblog[J]. 现代图书情报技术, 2016, 32(2): 43-51.
[2] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[3] Liu Haoxia, Peng Shanglian. A Community Detection Algorithm via Neighborhood Node Influence Based Label Propagation[J]. 现代图书情报技术, 2015, 31(4): 58-64.
[4] Bai Lingen, Chen Zhiqun, Wang Rongbo, Huang Xiaoxi. Empirical Analysis on K-core of Microblog Following Relationship Network[J]. 现代图书情报技术, 2013, 29(11): 68-74.
[5] Wu Xiaolan, Zhang Chengzhi. Survey on Community Detecting in Social Media[J]. 现代图书情报技术, 2013, 29(10): 36-42.
[6] Zhang Jinzhu. Influential Spreaders in Co-author Network Based on K-shell[J]. 现代图书情报技术, 2012, 28(5): 65-69.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938