Please wait a minute...
Data Analysis and Knowledge Discovery  2017, Vol. 1 Issue (9): 74-82    DOI: 10.11925/infotech.2096-3467.2017.09.08
Orginal Article Current Issue | Archive | Adv Search |
Analyzing Online Reviews with Dynamic Sentiment Topic Model
Hui Li,Yunfeng Hu()
School of Economics and Management, Xidian University, Xi’an 710071, China
Download: PDF(1197 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      

[Objective] This paper analyzes online reviews to identify the patterns of their topic contents and sentiments. [Methods] First, we obtained the sentiment of the reviews with the SSTM model. Then, we proposed a DSTM model based on the document, document sentiment distribution and words. Finally, we estimated the distribution of sentiment-topic and the keywords. [Results] We modeled the review datasets by time slice and found the changing trends of contents and sentiments over time. [Limitations] The proposed model did not include the relationship among different subjects, which might generate errors. [Conclusions] The DSTM model, which integrates the external time features, can effectively analyze the evolution of online review topics.

Key wordsShort-text Sentiment-Topic Model      Dynamic Sentiment Topic Model      Parameter Estimation      Sentiment Online Reviews     
Received: 07 April 2017      Published: 18 October 2017

Cite this article:

Hui Li,Yunfeng Hu. Analyzing Online Reviews with Dynamic Sentiment Topic Model. Data Analysis and Knowledge Discovery, 2017, 1(9): 74-82.

URL:     OR

[1] Somprasertsri G, Lalitrojwong P.Mining Feature-Opinion in Online Customer Reviews for Opinion Summarization[J]. Journal of Universal Computer Science, 2010, 16(6): 938-955.
[2] Zhuang L, Jing F, Zhu X Y.Movie Review Mining and Summarization[C]// Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM, 2006: 43-50.
[3] Hu M, Liu B.Mining and Summarizing Customer Reviews[C]// Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, Washington, USA. 2004: 168-177.
[4] Jo Y, Oh A H.Aspect and Sentiment Unification Model for Online Review Analysis[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. ACM, 2011: 815-824.
[5] Lin C, He Y, Everson R, et al.Weakly Supervised Joint Sentiment-topic Detection from Text[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(6): 1134-1145.
[6] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[7] 熊蜀峰, 姬东鸿. 面向产品评论分析的短文本情感主题模型[J]. 自动化学报, 2016, 42(8): 1227-1237.
[7] (Xiong Shufeng, Ji Donghong.A Short Text Sentiment-topic Model for Product Review Analysis[J]. Acta Automatica Sinica, 2016, 42(8): 1227-1237.)
[8] Blei D M, Lafferty J D.Dynamic Topic Models[C]// Proceedings of the 23rd International Conference on Machine Learning. 2006: 113-120.
[9] Griffiths T L, Steyversm M.Finding Scientific Topics[J]. Proceedings of the National Academy of Science of the United States of America, 2004, 101(S1): 5228-5235.
[10] Alsumaitl L, Barbará D, Domeniconic C.On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking[C]// Proceedings of the 8th IEEE International Conference on Data Mining. 2008.
[11] Yan X, Guo J, Lan Y, et a1. A Biterm Topic Model for Short Texts[C]//Proceedings of the 22nd International Conference on World Wide Web. 2013.
[12] Andrzejewski D, Zhu X.Latent Dirichlet Allocation with Topic-in-Set Knowledge[C]// Proceedings of the NAACL HLT 2009 Workshop on Semi-Supervised Learning for Natural Language Processing.2009: 43-48.
[13] Xu H, Zhang F, Wang W.Implicit Feature Identification in Chinese Reviews Using Explicit Topic Mining Model[J]. Knowledge-Based Systems, 2015, 76: 166-175.
[14] 李实. 中文网络客户评论中的产品特征挖掘方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[14] (Li Shi.Research on the Approaches of Mining Product Features from Chinese Customer Reviews on the Internet [D]. Harbin: Harbin Institute of Technology, 2009.)
[15] 李超雄, 黄发良, 温肖谦, 等. 基于动态主题情感混合模型的微博主题情感演化分析方法[J]. 计算机应用, 2015, 35(10): 2905-2910.
[15] (Li Chaoxiong, Huang Faliang, Wen Xiaoqian, et al.Evolution Analysis Method of Microblog Topic-Sentiment Based on Dynamic Topic Sentiment Combining Model[J]. Journal of Computer Applications, 2015, 35(10): 2905-2910.)
[16] 徐戈, 王厚峰. 自然语言处理中主题模型的发展[J]. 计算机学报, 2011, 34(8): 1423-1436.
[16] (Xu Ge, Wang Houfeng.The Development of Topic Models in Natural Language Processing[J]. Chinese Journal of Computers, 2011, 34(8): 1423-1436.)
No related articles found!
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938