Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (1): 99-108    DOI: 10.11925/infotech.2096-3467.2017.0946
Orginal Article Current Issue | Archive | Adv Search |
Optimizing Layouts of Outpatient Pharmacy Based on Association Rules
Yue He,Aixin Wang(),Yue Feng,Li Wang
Business School, Sichuan University, Chengdu 610065, China
Download: PDF(581 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      

[Objective] As the number of outpatient visits increases, optimizing the layout of pharmacy drugs can improve its service efficiency. [Methods] Firstly, we chose two departments with the largest number of prescriptions, which were divided into four sub groups with the K-means clustering method. Then, we used Apriori algorithm to explore the association rules among them. Finally, we obtained 31 effective drug layout rules and 18 effective drug class rules. [Results] We designed general layout rules for prescription drugs based on the collected data along with national drug storage and display standards, which were approved by the experts. [Limitations] We only studied prescription records from two departments, which might not yield the best association rules. [Conclusions] The proposed method could reduce the workload of pharmacists and the waiting time of patients, which improve the pharmacy services.

Key wordsAssociation Rule      Cluster Analysis      Pharmacy      Layout Optimization     
Received: 18 September 2017      Published: 05 February 2018

Cite this article:

Yue He,Aixin Wang,Yue Feng,Li Wang. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules. Data Analysis and Knowledge Discovery, 2018, 2(1): 99-108.

URL:     OR

[1] Khader N, Lashier A, Sang W Y.Pharmacy Robotic Dispensing and Planogram Analysis Using Association Rule Mining with Prescription Data[J]. Expert Systems with Applications, 2016, 57(C): 296-310.
[2] Song C, Yang J, Zhang X L, et al. Practical ‘Modular Design’ Research of Emergency Drug Supplies in Hospitals [J]. European Journal of Hospital Pharmacy, 2016, 23(6): ejhpharm-2015-000833.
[3] 贾克斌, 李含婧, 袁野. 基于Apriori算法的数据挖掘在移动医疗系统中的应用[J]. 北京工业大学学报, 2017, 43(3): 394-401.
[3] (Jia Kebin, Li Hanjing, Yuan Ye.Application of Data Mining in Mobile Health System Based on Apriori Algorithm[J]. Journal of Beijing University of Technology, 2017, 43(3): 394-401.)
[4] 林淑芳. 数据挖掘技术在药品零售经营决策支持中的应用[J]. 海峡药学, 2016, 28(8): 289-290.
[4] (Lin Shufang.Application of Data Mining Technology in Decision Support of Drug Retail Business[J]. Strait Pharmaceutical Journal, 2016, 28(8): 289-290.)
[5] 王文青, 刘津, 郭红叶, 等. 聚类分析方法在建立自动化药房快速配药区中的应用[J]. 中国药房, 2015, 26(22): 3115-3118.
[5] (Wang Wenqing, Liu Jin, Guo Hongye, et al.Application of Cluster Analysis Method to the Establishment of Rapid Dispensing Area in Automated Pharmacy[J]. China Pharmacy, 2015, 26(22): 3115-3118.)
[6] Lester C A, Chui M A.Using Link Analysis to Explore the Impact of the Physical Environment on Pharmacist Tasks[J]. Research in Social and Administrative Pharmacy, 2016, 12(4): 627-632.
[7] McDowell A L, Huang Y L. Selecting a Pharmacy Layout Design Using a Weighted Scoring System[J]. American Journal of Health-System Pharmacy: AJHP: Official Journal of the American Society of Health-System Pharmacists, 2012, 69(9): 796-804.
[8] 李秀敏, 李连新, 赵颖, 等. 关于优化门诊药房工作流程的调查分析[J]. 中国药房, 2015, 26(3): 299-301.
[8] (Li Xiumin, Li Lianxin, Zhao Ying, et al.Analysis and Survey of the Optimization of the Workflow of Outpatient Pharmacy[J]. China Pharmacy, 2015, 26(3): 299-301.)
[9] 张婷, 陈迎平, 张琳琳, 等. 自动化药房系统应用于我院门诊药房的实践与体会[J]. 中国药房, 2016, 27(19): 2666-2670.
[9] (Zhang Ting, Chen Yingping, Zhang Linlin, et al.Practice and Experience of the Application of Automatic Pharmacy System in Outpatient Pharmacy of Our Hospital[J]. China Pharmacy, 2016, 27(19): 2666-2670.)
[10] Surur A S, Teni F S, Girmay G, et al.Satisfaction of Clients with the Services of an Outpatient Pharmacy at a University Hospital in Northwestern Ethiopia: A Cross-Sectional Study[J]. BMC Health Services Research, 2015, 15(1): 229.
[11] Poulin T J, Bain K T, Balderose B K.Quality-Improvement Initiatives Focused on Enhancing Customer Service in the Outpatient Pharmacy[J]. American Journal of Health-System Pharmacy: AJHP: Official Journal of the American Society of Health-System Pharmacists, 2015, 72(2): 79-82.
[12] Burger G S, Jorgenson J A, Stevenson J G.Building a Business Case for an Outpatient Pharmacy[J]. Healthcare Financial Management: Journal of the Healthcare Financial Management Association, 2015, 69(6): 76-81.
[13] Chandanan A K, Shukla M K.Removal of Duplicate Rules for Association Rule Mining from Multilevel Dataset[J]. Procedia Computer Science, 2015, 45: 143-149.
[14] Zulfikar W B, Wahana A, Uriawan W, et al.Implementation of Association Rules with Apriori Algorithm for Increasing the Quality of Promotion[C]//Proceedings of International Conference on Cyber and IT Service Management. IEEE, 2016: 1-5.
[15] 杨丰梅, 李梦, 田歆, 等. 一种带记忆性的零售商品关联度分析方法[J]. 系统工程理论与实践, 2014, 34(11): 2872-2880.
[15] (Yang Fengmei, Li Meng, Tian Xin, et al.An Approach for Retail Goods Association Rules Analysis with Memory Property[J]. Systems Engineering - Theory & Practice, 2014, 34(11): 2872-2880.)
[16] 王正志, 薄涛. 进化进算[M]. 长沙: 国防科技大学出版社, 2001.
[16] (Wang Zhengzhi, Bo Tao.Evolutionary Computation [M]. Changsha: National University of Defense Technology Press, 2001.)
[17] Zhang T, Ramakrishnan R, Livny M.BIRCH: An Efficient Data Clustering Method for Very Large Databases[C]// Proceedings of ACM SIGMOD International Conference on Management of Data. ACM, 1996: 103-114.
[18] Davis L, Orvosh D.The Mating Pool: A Testbed for Experiments in the Evolution of Symbol Systems[C]// Proceedings of International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., 1995: 405-412.
[19] Ester M, Kriegel H P, Xu X.A Density Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [C]// Proceedings of International Conference on Knowledge Discovery and Data Mining. AAAI Press, 1996: 226-231.
[20] Fisher D.Improving Inference Through Conceptual Clustering[C]// Proceedings of National Conference on Artificial Intelligence. DBLP, 1987: 461-465.
[21] 夏松火. 数据仓库与数据挖掘技术[M]. 北京: 科学出版社, 2004.
[21] (Xia Songhuo.Data Warehouse and Data Mining Technology[M]. Beiing: Science Press, 2004.)
[22] 薛薇, 陈欢歌. Clementine数据挖掘方法及应用[M]. 北京: 电子工业出版社, 2010.
[22] (Xue Wei, Chen Huan’ge.Clementine Data Mining Methods and Applications[M]. Beijing: Publishing House of Electronics Industry, 2010.)
[23] Agrawal R, Srikant R.Fast Algorithms for Mining Association Rules[C]//Proceedings of the 20th International Conference on Very Large Data Bases. 1994, 1215: 487-499.
[24] Savasere A, Omiecinski E R, Navathe S B.An Efficient Algorithm for Mining Association Rules in Large Databases[J]. The VLDB Journal, 1995: 432-444.
[1] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[2] Yue He,Yue Feng,Shupeng Zhao,Yufeng Ma. Recommending Contents Based on Zhihu Q&A Community: Case Study of Logistics Topics[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[3] Dongmei Mu,Shan Jin,Yuanhong Ju. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[4] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[5] Runwen Chen,Yong Qiu,Wenbin Huang,Jun Wang. Analyzing Private College Students’ Online Lifestyle with Web-logs[J]. 数据分析与知识发现, 2017, 1(8): 31-38.
[6] Xueying Wang,Zixuan Zhang,Hao Wang,Sanhong Deng. Evaluating Brands of Agriculture Products: A Literature Review[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[7] Jiawang Cui,Chunwang Li. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[8] Xing Wei,Dehua Hu,Minhan Yi,Qizhen Zhu,Wenjie Zhu. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[9] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[10] Guangce Ruan, Lei Xia. Mining Document Topics Based on Association Rules[J]. 数据分析与知识发现, 2016, 32(12): 50-56.
[11] Du Siqi, Li Honglian, Lv Xueqiang. Research of Chinese Chunk Parsing in Application of the Product Feature Extraction[J]. 现代图书情报技术, 2015, 31(9): 26-30.
[12] Hao Mei, Wang Daoping. Mining Customer Focus Features from Product Reviews Oriented Supply Chain[J]. 现代图书情报技术, 2014, 30(4): 65-70.
[13] Li Beiwei, Xu Yue, Shan Jimin, Wei Changlong, Zhang Xinqi, Fu Jinxin. Study on Network Information Ecological Chain of Chinese Shopping Websites[J]. 现代图书情报技术, 2013, 29(9): 67-73.
[14] Liu Wei, Zhu Zhongming, Zhang Wangqiang, Wang Sili, Yao Xiaona, Lu Linong. Implementation of Semantic Retrieval Based on Ontology Created by SKOS and Association Rule Mining[J]. 现代图书情报技术, 2013, 29(7/8): 22-27.
[15] Wang Yong, Zhang Qin, Yang Xiaojie. Research on the Method of Extracting Features from Chinese Product Reviews on the Internet[J]. 现代图书情报技术, 2013, (12): 70-73.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938