Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (5): 70-76    DOI: 10.11925/infotech.2096-3467.2017.1019
Orginal Article Current Issue | Archive | Adv Search |
Measuring Item Similarity Based on Increment of Diversity
Yong Wang(),Yongdong Wang,Huifang Guo,Yumin Zhou
Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
Download: PDF(657 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to solve the issues facing traditional methods measuring item similarity, such as using common rating and poor prediction accuracy in highly sparse data environment. [Methods] First, we constructed the dissimilarity coefficient with the increment of diversity from bioinformatics. Then, we calculated item similarity according to the frequency and distribution of ratings, which effectively addressed the data sparsity issue. Finally, we improved the accuracy of measurement with the item attributes. [Results] Compared with traditional algorithms, the proposed method reduced RMSE by 2.56%, and then increased the F value by 3.88%. [Limitations] The diversity of our recommendation might be insufficient. [Conclusions] The proposed method could effectively measure item similarity.

Key wordsIncrement of Diversity      Similarity Measure      Data Sparsity      Collaborative Filtering      Cold-Start     
Received: 11 October 2017      Published: 20 June 2018

Cite this article:

Yong Wang,Yongdong Wang,Huifang Guo,Yumin Zhou. Measuring Item Similarity Based on Increment of Diversity. Data Analysis and Knowledge Discovery, 2018, 2(5): 70-76.

URL:     OR

[1] Schafer J B, Konstan J, Riedl J.Recommender Systems in E-commerce[C]// Proceedings of the 1st ACM Conference on Electronic Commerce. ACM, 1999: 158-166.
[2] Sánchez-Moreno D, González A B G, Vicente M D M, et al. A Collaborative Filtering Method for Music Recommendation Using Playing Coefficients for Artists and Users[J]. Expert Systems with Applications, 2016, 66(C): 234-244.
[3] Chou A Y.The Analysis of Online Social Networking: How Technology is Changing e-Commerce Purchasing Decision[J]. International Journal of Information Systems & Change Management, 2010, 4(4): 353-365.
[4] Ortega F, Sánchez J L, Bobadilla J, et al.Improving Collaborative Filtering-based Recommender Systems Results Using Pareto Dominance[J]. Information Sciences, 2013, 239(4): 50-61.
[5] Liu H, Hu Z, Mian A, et al.A New User Similarity Model to Improve the Accuracy of Collaborative Filtering[J]. Knowledge- Based Systems, 2014, 56(3): 156-166.
[6] Sarwar S M, Hasan M, Billal M, et al.Similarity Aggregation for Collaborative Filtering[C]// Proceedings of International Conference on Analysis of Images, Social Networks and Texts. Springer, 2015: 236-242.
[7] Ji K, Shen H.Addressing Cold-Start: Scalable Recommendation with Tags and Keywords[J]. Knowledge-Based Systems, 2015, 83(1): 42-50.
[8] Guan C, Yuen K K F, Coenen F. Towards an Intuitionistic Fuzzy Agglomerative Hierarchical Clustering Algorithm for Music Recommendation in Folksonomy[C]// Proceedings of 2015 IEEE International Conference on Systems, Man, and Cybernetics. IEEE, 2016: 2039-2042.
[9] 王兴茂, 张兴明, 吴毅涛, 等. 基于启发式聚类模型和类别相似度的协同过滤推荐算法[J]. 电子学报, 2016, 44(7): 1708-1713.
[9] (Wang Xingmao, Zhang Xingming, Wu Yitao, et al.A Collaborative Recommendation Algorithm Based on Heuristic Clustering Model and Category Similarity[J]. Acta Electronica Sinica, 2016, 44(7): 1708-1713.)
[10] Du Y P, Yao C Q, Huo S H, et al.A New Item-based Deep Network Structure Using a Restricted Boltzmann Machine for Collaborative Filtering[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(5): 658-666.
[11] Kabbur S, Ning X, Karypis G.FISM: Factored Item Similarity Models for Top-N Recommender Systems[C]// Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013: 659-667.
[12] 黄波, 严宣辉, 林建辉. 基于联合非负矩阵分解的协同过滤推荐算法[J]. 模式识别与人工智能, 2016, 29(8): 725-734.
[12] (Huang Bo, Yan Xuanhui, Lin Jianhui.Collaborative Filtering Recommendation Algorithm Based on Joint Nonnegative Matrix Factorization[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(8): 725-734.)
[13] Patra B K, Launonen R, Ollikainen V, et al.A New Similarity Measure Using Bhattacharyya Coefficient for Collaborative Filtering in Sparse Data[J]. Knowledge-Based Systems, 2015, 82(C): 163-177.
[14] 于阳, 于洪涛, 黄瑞阳. 基于熵优化近邻选择的协同过滤推荐算法[J]. 计算机应用研究, 2017, 34(9): 2618-2623.
[14] (Yu Yang, Yu Hongtao, Huang Ruiyang.Collaborative Filtering Recommendation Algorithm Based on Entropy Optimization Nearest-Neighbor Selection[J]. Application Research of Computers, 2017, 34(9): 2618-2623.)
[15] Wang Y, Deng J, Gao J, et al. A Hybrid User Similarity Model for Collaborative Filtering[J]. Information Sciences, 2017, 418-419: 102-118.
[16] Chen Y L, Li Q Z, Zhang L Q.Using Increment of Diversity to Predict Mitochondrial Proteins of Malaria Parasite: Integrating Pseudo-amino Acid Composition and Structural Alphabet[J]. Amino Acids, 2012, 42(4): 1309-1316.
[17] Ellingsen K E, Clarke K R, Somerfield P J, et al.Taxonomic Distinctness as a Measure of Diversity Applied over a Large Scale: The Benthos of the Norwegian Continental Shelf[J]. Journal of Animal Ecology, 2005, 74(6): 1069-1079.
[18] Zuo Y C, Li Q Z.Using K-minimum Increment of Diversity to Predict Secretory Proteins of Malaria Parasite Based on Groupings of Amino Acids[J]. Amino Acids, 2010, 38(3): 859-867.
[19] Willmott C J, Matsuura K.Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance[J]. Climate Research, 2005, 30(1): 79.
[20] Goutte C, Gaussier E.A Probabilistic Interpretation of Precision, Recall and F -Score, with Implication for Evaluation[C]// Proceedings of European Conference on Information Retrieval. Springer Berlin Heidelberg, 2005: 345-359.
[21] Ahn H J.A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-starting Problem[J]. Information Sciences, 2008, 178(1): 37-51.
[1] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[2] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[3] Daoping Wang,Zhongyang Jiang,Boqing Zhang. Collaborative Filtering Algorithm Based on Gray Correlation Analysis and Time Factor[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[4] Lingfeng Hua,Gaoming Yang,Xiujun Wang. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[5] Fuliang Xue,Junling Liu. Improving Collaborative Filtering Recommendation Based on Trust Relationship Among Users[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
[6] Xingxin Qin,Rongbo Wang,Xiaoxi Huang,Zhiqun Chen. Slope One Collaborative Filtering Algorithm Based on Multi-Weights[J]. 数据分析与知识发现, 2017, 1(6): 65-71.
[7] Li Daoguo,Li Lianjie,Shen Enping. New Collaborative Filtering Recommendation Algorithm Based on User Rating Time[J]. 现代图书情报技术, 2016, 32(9): 65-69.
[8] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[9] Wang Yong,Deng Jiangzhou,Deng Yongheng,Zhang Pu. A Collaborative Filtering Recommendation Algorithm Based on Item Probability Distribution[J]. 现代图书情报技术, 2016, 32(6): 73-79.
[10] Ma Li. Collaborative Filtering Recommendation Method Based on User Learning Tree[J]. 现代图书情报技术, 2016, 32(4): 72-80.
[11] Shuhao Jiang, Liyi Zhang, Zhixin Zhang. New Collaborative Filtering Algorithm Based on Relative Similarity[J]. 数据分析与知识发现, 2016, 32(12): 44-49.
[12] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[13] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[14] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[15] Ying Yan, Cao Yan, Mu Xiangwei. A Hybrid Collaborative Filtering Recommender Based on Item Rating Prediction[J]. 现代图书情报技术, 2015, 31(6): 27-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938