Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (3): 49-59    DOI: 10.11925/infotech.2096-3467.2017.1023
Current Issue | Archive | Adv Search |
Recommending Image Based on Feature Matching
Dongsu Liu,Chenhui Huo()
School of Economics and Management, Xidian University, Xi’an 710071, China
Download: PDF(1918 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper developed an image recommendation model based on feature matching technique and the LSH algorithm, aiming to improve the accuracy of recommendations. [Methods] First, we extracted the image’s SIFT features as the matching criteria. Then, we modified the LSH algorithm to retrieve images in high dimensional settings. Finally, we proposed an ICF-LSH algorithm based on the collaborative filtering techniques to build fusion recommendation model. [Results] We examined the proposed algorithm with various datasets and achieved better recall and precision rates for image recommendation. [Limitations] Only used the SIFT feature to extract image features. More research is needed to explore other matching features. [Conclusions] The proposed model improves the performance of image matching and recommendation systems.

Key wordsSIFT Feature      LSH      Image Matching      Recommendation System     
Received: 13 October 2017      Published: 03 April 2018

Cite this article:

Dongsu Liu,Chenhui Huo. Recommending Image Based on Feature Matching. Data Analysis and Knowledge Discovery, 2018, 2(3): 49-59.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.1023     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I3/49

[1] 余冲. 基于深度学习的协同过滤模型研究[D]. 深圳: 深圳大学, 2017.
[1] (Yu Chong.A Study on Collaborative Filtering Model Based on Deep Learning [D]. Shenzhen: Shenzhen University, 2017.)
[2] Krizhevsky A, Sutskever I, Hinton G E.ImageNet Classification with Deep Convolutional Neural Networks[C]// Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA. Curran Associates Inc., 2012: 1097-1105.
[3] LeCun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7553): 436-444.
[4] 郑孝遥, 鲍煜, 孙忠宝, 等. 一种基于信任的协同过滤推荐模型[J]. 计算机工程与应用, 2016, 52(5): 50-54.
[4] (Zheng Xiaoyao, Bao Yu, Sun Zhongbao, et al.Collaborative Filtering Recommendation Model Based on Trust[J]. Computer Engineering and Applications, 2016, 52(5): 50-54.)
[5] de Campos L M, Fernández-Luna J M, Huete J F, et al. Combining Content-based and Collaborative Recommendations: A Hybrid Approach Based on Bayesian Networks[J]. International Journal of Approximate Reasoning, 2010, 51(7): 785-799.
[6] Melville P, Mooney R J, Nagarajan R.Content-boosted Collaborative Filtering for Improved Recommendations[C]// Proceedings of the 18th National Conference on Artificial Intelligence, Edmonton, Canada. Menlo Park, USA: American Association for Artificial Intelligence, 2002: 187-192.
[7] He R, McAuley J. VBPR: Visual Bayesian Personalized Ranking from Implicit Feedback[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-16), Phoenix, USA. 2016.
[8] 苏栋梁. 融合图像相似性与协同过滤的个性化推荐算法研究[D]. 苏州: 苏州大学, 2014.
[8] (Su Dongliang.Research on Personalized Recommendation Algorithm Integrating Image Similarity and Collaborative Filtering[D]. Suzhou: Soochow University, 2014.)
[9] 朱鹏新. 基于图像内容的电商物品检索与推荐系统研究[D]. 广州: 华南理工大学, 2013.
[9] (Zhu Pengxin.Research of Content-based Commercial Product Image Retrieval and Recommendation System [D]. Guangzhou: South China University of Technology, 2013.)
[10] Indyk P.Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality[J]. Theory of Computing, 1998(11): 604-613.
[11] Szmit R.Locality Sensitive Hashing for Similarity Search Using Map Reduce on Large Scale Data[A]//Language Processing and Intelligent Information Systems[M]. Springer Berlin Heidelberg, 2013: 171-178.
[12] Andoni A, Indyk P.Near-optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions[C]// Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, Berkeley, USA. New York, USA: IEEE, 2006: 459-468.
[13] 曹玉东, 刘艳洋, 贾旭, 等. 基于改进的局部敏感哈希算法实现图像型垃圾邮件过滤[J]. 计算机应用研究, 2016, 33(6): 1693-1696.
[13] (Cao Yudong, Liu Yanyang, Jia Xu, et al.Image Spam Filtering with Improved LSH Algorithm[J]. Application Research of Computers, 2016, 33(6): 1693-1696.)
[14] 龚卫国, 张旋, 李正浩. 基于改进局部敏感散列算法的图像配准[J]. 光学精密工程, 2011, 19(6): 1375-1383.
[14] (Gong Weiguo, Zhang Xuan, Li Zhenghao.Image Registration Based on Extended LSH[J]. Optics and Precision Engineering, 2011, 19(6): 1375-1383.)
[15] 杨宇. 基于深度学习特征的图像推荐系统[D]. 成都: 电子科技大学, 2015.
[15] (Yang Yu.Image Recommendation System Based on the Image Features Obtained from Deep Learning[D]. Chengdu: University of Electronic Science and Technology of China, 2015.)
[16] 傅卫平, 秦川, 刘佳, 等. 基于SIFT算法的图像目标匹配与定位[J]. 仪器仪表学报, 2011, 32(1): 163-169.
[16] (Fu Weiping, Qin Chuan, Liu Jia, et al.Matching and Location of Image Object Based on SIFT Algorithm[J]. Chinese Journal of Scientific Instrument, 2011, 32(1): 163-169.)
[17] Suzuki T, Amano Y, Hashizume T.Vision Based Localization of a Small UAV for Generating a Large Mosaic Image[C]// Proceedings of SICE Annual Conference 2010, Taipei, Taiwan,China. New York, USA: IEEE, 2010: 2960-2964.
[18] 熊英, 马惠敏. 3维物体SIFT特征的提取与应用[J]. 中国图象图形学报, 2010, 15(5):814-819.
[18] (Xiong Ying, Ma Huimin.Extraction and Application of 3D Object SIFT Feature[J]. Journal of Image and Graphics, 2010, 15(5): 814-819.)
[19] Kounalakis T, Triantafyllidis G A.3D Scene’s Object Detection and Recognition Using Depth Layers and SIFT-based Machine Learning[J]. 3d Research, 2011, 2(3): 1-11.
[20] Bai J, Ma Y, Li J, et al.Novel Averaging Window Filter for SIFT in Infrared Face Recognition[J]. Chinese Optics Letters, 2011, 9(8): 081002.
[21] Lowe D G.Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[22] 王旭乐. 基于内容的图像检索系统中高维索引技术的研究[D]. 武汉: 华中科技大学, 2008.
[22] (Wang Xule.Research on High-dimensional Indexing Technology in Content-based Image Retrieval System [D]. Wuhan: Huazhong University of Science and Technology, 2008.)
[23] 丁雪梅, 王维雅, 黄向东. 基于差分和特征不变量的运动目标检测与跟踪[J]. 光学精密工程, 2007, 15(4): 570-576.
[23] (Ding Xuemei, Wang Weiya, Huang Xiangdong.New Method for Detecting and Tracking of Moving Target Based on Difference and Invariant[J]. Optics & Precision Engineering, 2007, 15(4): 570-576.)
[24] Indyk P. Stable Distributions, Pseudorandom Generators, Embeddings and Data Stream Computation[C]// Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, USA. New York, USA: IEEE, 2000.
[25] Datar M, Immorlica N, Indyk P, et al.Locality-sensitive Hashing Scheme Based on P-stable Distributions[C]// Proceedings of the 20th Symposium on Computational Geometry, Brooklyn, USA. New York, USA: ACM, 2004: 253-262.
[26] Andoni A, Razenshteyn I.Optimal Data-Dependent Hashing for Approximate Near Neighbors[C]//Proceedings of the 47th Annual ACM Symposium on Theory of Computing, Portland, USA. New York, USA: ACM, 2015: 793-801.
[27] The MIR-Flickr Retrieval Evaluation [EB/OL]. [2017-08-17]. .
[1] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[2] Luo Lin, Liang Guisheng, Cai Jun. Book Recommendation System Based on Folksonomy in Library[J]. 现代图书情报技术, 2014, 30(4): 14-19.
[3] Tian Ye, Zhu Zhongming, Liu Shudong. Review of Recommendation System Based on Linked Data[J]. 现代图书情报技术, 2013, 29(10): 1-7.
[4] Li Jia, Zhang Pengzhu, Li Xinmiao, Jihie Kim. An Online Tutoring System Mining Discussion Logs to Stimulate Students Thinking[J]. 现代图书情报技术, 2012, 28(4): 10-16.
[5] Li Cong. ECRec:e-Commerce Personalized Recommendation Management Based on Collaborative Filtering[J]. 现代图书情报技术, 2009, (10): 34-39.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn