Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (6): 37-47    DOI: 10.11925/infotech.2096-3467.2017.1107
Current Issue | Archive | Adv Search |
Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity
Xiufang Wang,Shu Sheng(),Yan Lu
College of Computer of Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Download: PDF(3060 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper builds a model to monitor the trending topics from microblogs, aiming to deal with the issues of text drifting and quantitation of sentimental polarity. [Methods] First, we proposed a public opinion analysis model based on topic clustering and sentiment intensity. Then, we used the time series regression analysis to predict the sentimental changes among the trending topics. [Results] The prediction accuracy of our model reached 88.97%, which was about 7% higher than the iLab-Edinburgh model. [Limitations] More research is needed to study the early warning mechanisms for emergency events. [Conclusions] The proposed model could improve the prediction accuracy of sentimental changes, which provides an effective way to analyze the public opinion from microblogs.

Key wordsPublic Opinion Analysis      Sentiment Analysis      Topic Clustering      Sentiment Intensity Analysis     
Received: 07 November 2017      Published: 11 July 2018

Cite this article:

Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity. Data Analysis and Knowledge Discovery, 2018, 2(6): 37-47.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.1107     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I6/37

[1] 马晓玲, 金碧漪, 范并思. 中文文本情感倾向分析研究[J]. 情报资料工作, 2013(1): 52-56.
[1] (Ma Xiaoling, Jin Biyi, Fan Bingsi.An Analysis of Chinese Text Emotional Tendency[J]. Information and Documentation Service, 2013(1): 52-56.)
[2] Vaibhavi N, Patodkar N P, Shaikh I R.Sentimental Analysis on Twitter Data Using Naive Bayes[C]// Proceedings of the 6th Post Graduate Conference for Computer Engineering. 2017.
[3] 唐晓波, 罗颖利. 融入情感差异和用户兴趣的微博转发预测[J]. 图书情报工作, 2017, 61(9): 102-110.
[3] (Tang Xiaobo, Luo Yingli.Integrating Emotional Divergence and User Interests into the Prediction of Microblog Retweeting[J]. Library and Information Service, 2017, 61(9): 102-110.)
[4] Ingle M M, Emmanues M.Evaluations on Sentiment Analysis of Micro Blogging Site Using Topic Modeling[C]// Proceedings of the 2016 International Conference on Signal Processing, Communication, Power and Embedded System. 2016.
[5] Giatsoglou M, Vozalis M G, Diamantaras K, et al.Sentiment Analysis Leveraging Emotions and Word Embeddings[J]. Expert Systems with Applications, 2017, 69: 214-224.
[6] 韩忠明, 陈妮, 乐嘉锦, 等. 面向热点话题时间序列的有效聚类算法研究[J]. 计算机学报, 2012, 35(11): 2337-2347.
[6] (Han Zhongming, Chen Ni, Le Jiajin, et al.An Efficient and Effective Clustering Algorithm for Time Series of Hot Topics[J]. Chinese Journal of Computers, 2012, 35(11): 2337-2347.)
[7] 吴青林, 周天宏. 基于话题聚类及情感强度的中文微博舆情分析[J]. 情报理论与实践, 2016, 39(1): 109-112.
[7] (Wu Qinglin, Zhou Tianhong.Public Opinion Analysis of Chinese Microblog Based on Topic Clustering and Emotion Intensity[J]. Information Studies: Theory & Application, 2016, 39(1): 109-112.)
[8] 何跃, 肖敏, 张月. 结合话题相关性的热点话题情感倾向研究[J]. 数据分析与知识发现, 2017, 1(3): 46-53.
[8] (He Yue, Xiao Min, Zhang Yue.Sentiment Analysis of Trending Topics Based on Relevance[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 46-53.)
[9] Sotiropoulos D N, Kounavis C D, Kourouthanassis P, et al.What Drives Social Sentiment? An Entropic Measure-based Clustering Approach Towards Identifying Factors that Influence Social Sentiment Polarity[C]// Proceedings of the 5th International Conference on Information, Intelligence, Systems and Applications. 2014.
[10] Manek A S, Shenoy P D, Mohan M C, et al.Aspect Term Extraction for Sentiment Analysis in Large Movie Reviews Using Gini Index Feature Selection Method and SVM Classifier[J]. World Wide Web, 2017, 20(2): 135-154.
[11] 李慧, 柴亚青. 基于属性特征的评论文本情感极性量化分析[J]. 数据分析与知识发现, 2017, 1(10): 1-11.
[11] (Li Hui, Chai Yaqing.Analysis Sentiment Polarity of Comments Based on Attributes[J]. Data Analysis and Knowledge Discovery, 2017, 1(10): 1-11.)
[12] Meisheri H, Saha R, Sinha P, et al.Textmining at EmoInt-2017: A Deep Learning Approach to Sentiment Intensity Scoring of English Tweets[C]//Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Copenhagen, Denmark. 2017.
[13] 郑丽娟, 王洪伟, 郭恺强. 基于情感词模糊统计的网络评论情感强度的研究[J]. 系统管理学报, 2014, 23(3): 324-330.
[13] (Zheng Lijuan, Wang Hongwei, Guo Kaiqiang.Sentiment Intensity of Online Reviews Based on Fuzzy-Statistics of Sentiment Words[J]. Journal of Systems & Management, 2014, 23(3): 324-330.)
[14] Pérez-Ortiz M, Gutiérrez P A, Carbonero-Ruz M, et al.Semi-supervised Learning for Ordinal Kernel Discriminant Analysis[J]. Neural Networks, 2016, 84: 57-66.
[15] 周航星, 陈松灿. 有序判别典型相关分析[J]. 软件学报, 2014, 25(9): 2018-2025.
[15] (Zhou Hangxing, Chen Songcan.Ordinal Discriminative Canonical Correlation Analysis[J]. Journal of Software, 2014, 25(9): 2018-2025.)
[16] Hotelling H.Relations Between 2 Sets of Variants[J]. Biometrika, 1935, 28(3-4): 312-377.
[17] Yoshida K, Yoshimoto J, Doya K.Sparse Kernel Canonical Correlation Analysis for Discovery of Nonlinear Interactions in High-dimensional Data[J]. BMC Bioinformatics, 2017, 18(1): 108-118.
[18] 钟敏娟, 万常选, 刘德喜. 基于关联规则挖掘和极性分析的商品评论情感词典构建[J]. 情报学报, 2016, 35(5): 501-509.
[18] (Zhong Minjuan, Wan Changxuan, Liu Dexi.Opinion Lexicon Construction Based on Association Rule and Orientation Analysis for Production Review[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(5): 501-509.)
[19] 刘德喜. 情感词扩展对微博情感分类性能影响的实验分析[J]. 小型微型计算机系统, 2016, 37(5): 957-965.
[19] (Liu Dexi.Effect of Sentimental Word Expansion on the Performance of Microblog Sentiment Classification Task[J]. Journal of Chinese Computer Systems, 2016, 37(5): 957-965.)
[20] 阳林. 情感词权值研究及在情感极性分析中的应用[J]. 计算机应用, 2015, 35(S2): 125-127.
[20] (Yang Lin.Emotional Term Weight Research and Application to Emotional Polarity Analysis[J]. Journal of Computer Applications, 2015, 35(S2): 125-127.)
[21] Van Arthur G, Staals F, Löffler M, et al.Multi-Granular Trend Detection for Time-Series Analysis[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 661-670.
[22] 唐晓波, 童海燕, 严承希. 基于话题情感强度的微博舆情分析[J]. 图书馆学研究, 2014(17): 85-93.
[22] (Tang Xiaobo, Tong Haiyan, Yan Chengxi.Microblogging Public Opinion Analysis Based on Emotional Intensity of the Topic[J]. Research on Libray Science, 2014(17): 85-93.)
[23] Refaee E, Rieser V. iLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases[C]// Proceedings of the 10th International Workshop on Semantic Evaluation. 2016.
[1] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[2] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[3] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[4] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[5] Sinan Yang,Jian Xu,Pingping Ye. Review of Online Sentiment Visualization Techniques[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[6] Tingting Wang,Kaiping Wang,Guijie Qi. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[7] Yang Zhao,Qiqi Li,Yuhan Chen,Wenhang Cao. Examining Consumer Reviews of Overseas Shopping APP with Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(11): 19-27.
[8] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[9] Hongli Zhang,Jiying Liu,Sinan Yang,Jian Xu. Predicting Online Users’ Ratings with Comments[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[10] Ge Gao,Junmei Luo,Yu Wang. Analyzing Textual Sentiment Based on HNC Theory[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[11] Huanrong Shou,Shuqing Deng,Jian Xu. Detecting Online Rumors with Sentiment Analysis[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
[12] Chuanming Yu,Bolin Feng,Lu An. Sentiment Analysis in Cross-Domain Environment with Deep Representative Learning[J]. 数据分析与知识发现, 2017, 1(7): 73-81.
[13] Xinhui Dun,Yunqiu Zhang,Kaixi Yang. Fine-grained Sentiment Analysis Based on Weibo[J]. 数据分析与知识发现, 2017, 1(7): 61-72.
[14] Weifang Wu,Baojun Gao,Haixia Yang,Hanlin Sun. The Impacts of Reviews on Hotel Satisfaction: A Sentiment Analysis Method[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
[15] Shuang Yang,Fen Chen. Analyzing Sentiments of Micro-blog Posts Based on Support Vector Machine[J]. 数据分析与知识发现, 2017, 1(2): 73-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn