Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (6): 1-12    DOI: 10.11925/infotech.2096-3467.2017.1174
Current Issue | Archive | Adv Search |
Impacts of “Poster-Follower” Sentiment on Stock Market Performance
Ning Zhang,Lemin Yin(),Lifeng He
School of Business, Qingdao University, Qingdao 266071, China
Download: PDF(680 KB)   HTML ( 2
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper investigates the relationship between the “Bullish Sentiment Index” (BSI) of online reviews/following comments and the performance of stock market. [Methods] First, we conducted sentiment classification for comments on Shanghai Stock Exchange Composite Index using semantic analysis method. Then, we built the sentiment tendencies of these reviews and constructed their “Poster-Follower” BSI. Finally, we used linear and nonlinear models to examine the proposed method empirically. [Results] The BSI based on our proposed method (text mining) could effectively predict the stock market trend, especially on its returns. [Limitations] We only consider two emotional polarities and more research is needed to enhance the sentimental strength. [Conclusions] The Bullish Sentiment Index could effectively predict the overall stock market trend by measuring investors’ sentiment.

Key wordsStock Comment      Stock Comment Attention Rate      Text Mining      Investor Sentiment     
Received: 22 November 2017      Published: 11 July 2018

Cite this article:

Ning Zhang,Lemin Yin,Lifeng He. Impacts of “Poster-Follower” Sentiment on Stock Market Performance. Data Analysis and Knowledge Discovery, 2018, 2(6): 1-12.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2017.1174     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I6/1

[1] Baker M, Wurgler J.Investor Sentiment in the Stock Market[J]. Journal of Economic Perspectives, 2007, 21(2): 129-151.
[2] Brown G W, Cliff M T.Investor Sentiment and the Near-term Stock Market[J]. Journal of Empirical Finance, 2004, 11(1): 1-27.
[3] Fisher K L, Statman M.Investor Sentiment and Stock Returns[J]. Financial Analysts Journal, 2000, 56(2): 16-27.
[4] 王美今, 孙建军. 中国股市收益、收益波动与投资者情绪[J]. 经济研究, 2004(10): 75-83.
[4] (Wang Meijin, Sun Jianjun. Stock Market Returns, Volatility and the Role of Investor Sentiment in China[J]. Economic Research Journal, 2004(10): 75-83.)
[5] 郁晨. 投资者情绪理论、度量及应用研究综述[J]. 金融评论, 2017(3): 111-126.
[5] (Yu Chen.Investor Sentiment Theory: Measurement and Application[J]. Chinese Review of Financial Studies, 2017(3): 111-126.)
[6] Barberis N, Shleifer A, Vishny R.A Model of Investor Sentiment[J]. Journal of Financial Economics, 1998, 49(3): 307-343 .
[7] 张强, 杨淑娥, 杨红, 等. 中国股市投资者情绪与股票收益的实证研究[J]. 系统工程, 2007, 25(7): 13-17.
[7] (Zhang Qiang, Yang Shue, Yang Hong.An Empirical Study on Investors’ Sentiment and Stock Returns in Chinese Stock Market[J].Systems Engineering, 2007, 25(7): 13-17.)
[8] Stambaugh R F, Yu J F, Yuan Y.The Short of It: Investor Sentiment and Anomalies[J]. Journal of Financial Economics, 2012, 104(2): 288-302.
[9] Antweiler W, Frank M Z.Is All that Talk just Noise? The Information Content of Internet Stock Message Boards[J]. The Journal of Finance, 2004, 59(3): 1259-1294.
[10] Das S R, Chen M Y.Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web[J]. Management Science, 2007, 53(9): 1375-1388.
[11] 蒋翠清, 梁坤, 丁勇, 等. 基于社会媒体的股票行为预测[J]. 中国管理科学, 2015, 23(1): 17-24.
[11] (Jiang Cuiqing, Liang Kun, Ding Yong, et al.Predicting Stock Behavior via Social Media[J]. Chinese Journal of Management Science, 2015, 23(1): 17-24.)
[12] 陆静, 周媛. 投资者情绪对股价的影响——基于AH股交叉上市股票的实证分析[J]. 中国管理科学, 2015, 23(11): 21-28.
[12] (Lu Jing, Zhou Yuan.The Effect of Investor Sentiment on Stock Pricing—An Empirical Study Based on A-H Shares of Cross-listing Companies[J]. Chinese Journal of Management Science, 2015, 23(11): 21-28.)
[13] 宋顺林, 王彦超. 投资者情绪如何影响股票定价?—基于IPO公司的实证研究[J]. 管理科学学报, 2016, 19(5): 41-55.
[13] (Song Shunlin, Wang Yanchao.How does Investor Sentiment Affect Stock Pricing? An Empirical Research Based on IPO Firms[J]. Journal of Management Sciences in China, 2016, 19(5): 41-55.)
[14] 王春. 投资者情绪对股票市场收益和波动的影响——基于开放式股票型基金资金净流入的实证研究[J]. 中国管理科学, 2014, 22(9): 49-56.
[14] (Wang Chun.The Effect of Investor Sentiment on Return and Volatility of Stock Market-Based on Empirical Study of Open-end Equity Funds[J]. Chinese Journal of Management Science, 2014, 22(9): 49-56.)
[15] Chen M P, Chen P F, Lee C C.Asymmetric Effects of Investor Sentiment on Industry Stock Returns: Panel Data Evidence[J]. Emerging Markets Review, 2013, 14(1): 35-54.
[16] 段江娇, 刘红忠, 曾剑平. 投资者情绪指数、分析师推荐指数与股指收益率的影响研究——基于我国东方财富网股吧论坛、新浪网分析师个股评级数据[J]. 上海金融, 2014(11): 60-64.
[16] (Duan Jiangjiao, Liu Hongzhong, Zeng Jianping.Research on the Impact of Investor Sentiment Index, Analyst Recommendation Index and Stock Index Yield - Based on the Ranking of China Orient Bank.com.cn and Sina.com[J]. Shanghai Finance, 2014(11): 60-64.)
[17] 王洪伟, 张对, 郑丽娟, 等. 网络股评对股市走势的影响:基于文本情感分析的方法[J]. 情报学报, 2015, 34(11): 1190-1202.
[17] (Wang Hongwei, Zhang Dui, Zheng Lijuan, et al.The Effect of Online Comments on Stock Trends by Sentiment Analysis[J]. Journal of the China Society for Scientific and Technical Information, 2015, 34(11): 1190-1202.)
[18] 黄润鹏, 左文明, 毕凌燕. 基于微博情绪信息的股票市场预测[J]. 管理工程学报, 2015, 29(1): 47-52.
[18] (Huang Runpeng, Zuo Wenming, Bi Lingyan.Predicting the Stock Market Based on Microblog Mood[J]. Journal of Industrial Engineering, 2015, 29(1): 47-52.)
[19] Kurov A.Investor Sentiment and the Stock Market’s Reaction to Monetary Policy[J]. Journal of Banking & Finance, 2010, 34(1): 139-149.
[20] Porshnev A, Redkin I, Shevchenko A.Machine Learning in Prediction of Stock Market Indicators Based on Historical Data and Data from Twitter Sentiment Analysis[C]// Proceedings of the 13th International Conference on Data Mining Workshops. IEEE, 2011: 440-444.
[21] Kearney C, Liu S.Textual Sentiment in Finance: A Survey of Methods and Models[J]. International Review of Financial Analysis, 2014, 33(3): 171-185.
[22] Oliveira N, Cortez P, Areal N.Stock Market Sentiment Lexicon Acquisition Using Microblogging Data and Statistical Measures[J]. Decision Support Systems, 2016, 85(C): 62-73.
[23] Renault T.Intraday Online Investor Sentiment and Return Patterns in the U.S. Stock Market[J]. Journal of Banking & Finance, 2017, 84(11): 25-40.
[24] 杨晓兰, 沈翰彬, 祝宇. 本地偏好、投资者情绪与股票收益率:来自网络论坛的经验证据[J]. 金融研究, 2016(12): 143-158.
[24] (Yang Xiaolan, Shen Hanbin, Zhu Yu.The Effect of Local Bias in Investor Attention and Investor Sentiment on Stock Markets: Evidence from Online Forum[J]. Journal of Financial Research, 2016(12): 143-158.)
[25] Bollen J, Mao H, Zeng X.Twitter Mood Predicts the Stock Market[J]. Journal of Computational Science, 2011, 2(1):1-8.
[26] Cheng Y H, Ho H Y.Social Influence’s Impact on Reader Perceptions of Online Reviews[J]. Journal of Business Research, 2015, 68(4): 883-887.
[27] Piñeiro-Chousa J R, López-Cabarcos M á, Pérez-Pico A M. Examining the Influence of Stock Market Variables on Microblogging Sentiment[J]. Journal of Business Research, 2015, 69(6): 2087-2092.
[28] Oliveira N, Cortez P, Areal N.The Impact of Microblogging Data for Stock Market Prediction: Using Twitter to Predict Returns, Volatility, Trading Volume and Survey Sentiment Indices[J]. Expert Systems with Applications, 2017, 73: 125-144.
[29] Cortez P, Embrechts M J.Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models[J]. Information Sciences, 2013, 225: 1-17.
[30] 阳爱民, 林江豪, 周咏梅. 中文文本情感词典构建方法[J]. 计算机科学与探索, 2013, 7(11): 1033-1039.
[30] (Yang Aimin, Lin Jianghao, Zhou Yongmei.Method on Building Chinese Text Sentiment Lexicon[J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1033-1039.)
[1] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[3] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[4] Qiangbing Wang,Chengzhi Zhang. Constructing Users Profiles with Content and Gesture Behaviors[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[5] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[6] Yao Zhaoxu,Ma Jing. Extracting Topic and Opinion from Microblog Posts with New Algorithm[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[7] Lan Qiujun,Liu Wenxing,Li Weikang,Hu Xingye. Sentiment Analysis of Financial Forum Textual Message[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[8] Qiang Bi, Jian Liu, Yulai Bao. A New Text Clustering Method Based on Semantic Similarity[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[9] Lin Yuanyuan,Zhan Hongfei,Yu Junhe,Li Changjiang,Zhang Fan. Using Product Reviews to Analyze Sentiment Fluctuation of Consumer[J]. 现代图书情报技术, 2016, 32(11): 44-53.
[10] Zhao Dongxiao,Wang Xiaoyue,Bai Rujiang,Liu Ziqiang. Semantic Text Mining Methodologies for Intelligence Analysis[J]. 现代图书情报技术, 2016, 32(10): 13-24.
[11] Sui Mingshuang,Cui Lei. Extracting Chemical and Disease Named Entities with Multiple-Feature CRF Model[J]. 现代图书情报技术, 2016, 32(10): 91-97.
[12] Ruyi Yang,Dongsu Liu,Hui Li. An Improved Topic Model Integrating Extra-Features[J]. 现代图书情报技术, 2016, 32(1): 48-54.
[13] Wang Ying, Wu Zhenxin, Xie Jing. Review on Semantic Retrieval System for Scientific Literature[J]. 现代图书情报技术, 2015, 31(5): 1-7.
[14] Hao Mei, Yang Xiaoyuan. Credibility Research on Chinese Online Customer Reviews[J]. 现代图书情报技术, 2015, 31(2): 55-63.
[15] Ye Chuan, Ma Jing. Research on Topic Discovery Algoritm of Multimedia Microblog Comments Information[J]. 现代图书情报技术, 2015, 31(11): 51-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn