Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (4): 38-47    DOI: 10.11925/infotech.2096-3467.2017.1257
Orginal Article Current Issue | Archive | Adv Search |
Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce
Tingting Wang(),Kaiping Wang,Guijie Qi
School of Management, Shandong University, Ji’nan 250100, China
Download: PDF(1160 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This study examines the impacts of user reviews on the adoption of ideas from Salesforce, an open innovation platform. [Methods] First, we divided information from Salesforce into the normative and informational categories based on the social impact theory. Then, we obtained the emotional variables of the idea’s title, content and comments with the help of text analytics to study their impacts on the idea’s implementation. [Results] The length of idea titles and contents, the title sentiment and the idea score had significant impacts on its adoption. The number of comments also influenced the comment’s sentiment. [Limitetions] We only investigated data from one platform. [Conclusions] This research helps enterprises evaluate and identify valuable ideas quickly, which also increases the probability of idea implementation.

Key wordsEnterprise Open Innovation Platform      User Generated Content      Ideas Implemented      Sentiment Analysis      Social Impact Theory     
Received: 12 December 2017      Published: 11 May 2018

Cite this article:

Tingting Wang,Kaiping Wang,Guijie Qi. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce. Data Analysis and Knowledge Discovery, 2018, 2(4): 38-47.

URL:     OR

[1] Blohm I, Leimeister J M, Krcmar H.Crowdsourcing: How to Benefit from (Too) Many Great Ideas[J]. MIS Quarterly Executive, 2013, 12(12): 199-211.
[2] Bedford D, Faust L.Online Communities and Open Innovation[J]. Industry & Innovation, 2008, 15(2): 115-123.
[3] Gangi D P M, Wasko M. Steal My Idea! Organizational Adoption of User Innovations from a User Innovation Community: A Case Study of Dell IdeaStorm[J]. Decision Support Systems, 2009, 48(1): 303-312.
[4] Bayus B L.Crowdsourcing New Product Ideas over Time: An Analysis of the Dell IdeaStorm Community[J]. Management Science, 2013, 59(1): 226-244.
[5] Li M, Kankanhalli A, Kim S H.Which Ideas are More Likely to be Implemented in Online User Innovation Communities? An Empirical Analysis[J]. Decision Support Systems, 2016, 84: 28-40.
[6] Cantallops A S, Salvi F.New Consumer Behavior: A Review of Research on eWOM and Hotels[J]. International Journal of Hospitality Management, 2014, 36(1): 41-51.
[7] Chesbrough H W.The Era of Open Innovation[J]. MIT Sloan Management Review, 2003, 44(3): 35-41.
[8] Zwass V.Co-Creation: Toward a Taxonomy and an Integrated Research Perspective[J]. International Journal of Electronic Commerce, 2010, 15(1): 11-48.
[9] Hienerth C, Hippel V E, Berg J M.User Community vs. Producer Innovation Development Efficiency: A First Empirical Study[J]. Research Policy, 2014, 43(1): 190-201.
[10] Gangi P M D, Wasko M. Open Innovation Through Online Communities [A]// Knowledge Management and Organizational Learning[M]. Springer, 2009: 199-213.
[11] Gangi P M D, Wasko M, Hooker R E. Getting Customers’ Ideas to Work for You: Learning from Dell How to Succeed with Online User Innovation Communities[J]. MIS Quarterly Executive, 2010, 9(4): 213-228.
[12] Hossain M, Islam K M Z. Ideation Through Online Open Innovation Platform: Dell IdeaStorm[J]. Journal of the Knowledge Economy, 2015, 6(3): 611-624.
[13] Chan K W, Li S Y, Zhu J J.Fostering Customer Ideation in Crowdsourcing Community: The Role of Peer-to-Peer and Peer-to-Firm Interactions[J]. Journal of Interactive Marketing, 2015, 31: 42-62.
[14] Pang B, Lee L.Opinion Mining and Sentiment Analysis[J]. Foundations & Trends in Information Retrieval, 2008, 2(1-2): 1-135.
[15] Thelwall M, Buckley K, Paltoglou G.Sentiment in Twitter Events[J]. Journal of the Association for Information Science & Technology, 2014, 62(2): 406-418.
[16] 孙春华, 刘业政. 电影预告片在线投放对票房的影响——基于文本情感分析方法[J]. 中国管理科学, 2017, 25(10): 151-161.
[16] (Sun Chunhua, Liu Yezheng.The Effects of Online Pre-launch Movie Trailers on the Box Office Revenue — Based on Text Sentiment Analysis Method[J]. Chinese Journal of Management Science, 2017, 25(10): 151-161.)
[17] 姜霖, 张麒麟. 基于评论情感分析的个性化推荐策略研究——以豆瓣影评为例[J]. 情报理论与实践, 2017, 40(8): 99-104.
[17] (Jiang Lin, Zhang Qilin.Research on Personalized Recommendation Strategy Based on Sentimental Analysis of the Reviews[J]. Information Studies: Theory & Application, 2017, 40(8): 99-104.)
[18] 吴维芳, 高宝俊, 杨海霞, 等. 评论文本对酒店满意度的影响: 基于情感分析的方法[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
[18] (Wu Weifang, Gao Baojun, Yang Haixia, et al.The Impacts of Review on Hotel Satisfaction: A Sentiment Analysis Method[J]. Data Analysis and Knowledge Discovery, 2017, 1(3): 62-71.)
[19] 肖璐, 陈果, 刘继云. 基于情感分析的企业产品级竞争对手识别研究——以用户评论为数据源[J]. 图书情报工作, 2016, 60(1): 83-90, 93.
[19] (Xiao Lu, Chen Guo, Liu Jiyun.Study on Identification of Enterprise Product Level Competitor Based on Sentiment Analysis: Taking User Reviews for Data Resources[J]. Library and Information Service, 2016, 60(1): 83-90, 93.)
[20] Ullah R, Amblee N, Kim W, et al.From Valence to Emotions: Exploring the Distribution of Emotions in Online Product Reviews[J]. Decision Support Systems, 2016, 81: 41-53.
[21] 孟园, 王洪伟, 王伟. 网络口碑对产品销量的影响: 基于细粒度的情感分析方法[J]. 管理评论, 2017, 29(1): 144-154.
[21] (Meng Yuan, Wang Hongwei, Wang Wei.The Effect of Electronic Word-of-Mouth on Sales Through Fine-gained Sentiment Analysis[J]. Management Review, 2017, 29(1): 144-154.)
[22] 王英, 龚花萍. 基于情感维度的大数据网络舆情情感倾向性分析研究——以“南昌大学自主保洁”微博舆情事件为例[J]. 情报科学, 2017, 35(4): 37-42.
[22] (Wang Ying, Gong Huaping.Analysis of Sentiment Tendency of Big Data Online Public Opinion Based on the Sentiment Dimension—Taking “the Independent Cleaning of Nanchang University” Weibo Public Opinion Event as an Example[J]. Information Science, 2017, 35(4): 37-42.)
[23] 朱茂然, 林星凯, 陆頲, 等. 基于情感分析的社交网络意见领袖的识别——以汽车论坛为例[J]. 情报理论与实践, 2017, 40(6): 76-81.
[23] (Zhu Maoran, Lin Xingkai, Lu Ting, et al.Identification of Opinion Leaders in Social Networks Based on Sentimental Analysis: Evidence from an Automotive Forum[J]. Information Studies: Theory & Application, 2017, 40(6): 76-81.)
[24] 黄彦婷, 杨忠, 金辉, 等. 基于社会影响理论的知识共享意愿产生模型[J]. 情报杂志, 2013, 32(6): 141-146.
[24] (Huang Yanting, Yang Zhong, Jin Hui, et al.A Generation Model of the Intention to Knowledge-Sharing Based on the Social Influence Theory[J]. Journal of Intelligence, 2013, 32(6): 141-146.)
[25] Burnkrant R E, Cousineau A.Informational and Normative Social Influence in Buyer Behavior[J]. Journal of Consumer Research, 1975, 2(3): 206-215.
[26] 邬溪羽, 郭斌, 周莎莎, 等. 在线评论如何影响消费者: 基于社会影响视角的整合框架[J]. 西安电子科技大学学报: 社会科学版, 2015, 25(1): 1-18.
[26] (Wu Xiyu, Guo Bin, Zhou Shasha, et al.How Online Product Reviews Affect Consumers: A Conceptual Framework Based on Social Influence Perspective[J]. Journal of Xidian University: Social Science Edition, 2015, 25(1): 1-18.)
[27] Rogers E M.Diffusion of Innovations[J]. Journal of Continuing Education in the Health Professions, 2007, 26(1): 62-64.
[28] Hamilton M A, Mineo P J.A Framework for Understanding Equivocation[J]. Journal of Language and Social Psychology, 1998, 17(1): 3-35.
[29] Sidali K L, Schulze H, Spiller A.The Impact of Online Reviews on the Choice of Holiday Accommodations [A]// Information and Communication Technologies in Tourism 2009[M]. Springer, 2009: 87-98.
[30] Heit E, Rotello C M.The Pervasive Effects of Argument Length on Inductive Reasoning[J]. Thinking & Reasoning, 2012, 18(3): 244-277.
[31] Schemmann B, Herrmann A M, Chappin M M H, et al. Crowdsourcing Ideas: Involving Ordinary Users in the Ideation Phase of New Product Development[J]. Research Policy, 2016, 45(6): 1145-1154.
[32] Baccianella S, Esuli A, Sebastiani F.SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining[C]// Proceedings of the 7th International Conference on Language Resources and Evaluation, Valletta, Malta. 2010: 83-90.
[33] Lee H, Choi K, Yoo D, et al.The More the Worse? Mining Valuable Ideas with Sentiment Analysis for Idea Recommendation[J]. Polar Biology, 2013, 36(4): 593-602.
[1] Zhongxi You,Weina Hua,Xuelian Pan. Matching Book Reviews and Essential Sentiment Lexicons with Chinese Word Segmenters[J]. 数据分析与知识发现, 2019, 3(7): 23-33.
[2] Cuiqing Jiang,Yibo Guo,Yao Liu. Constructing a Domain Sentiment Lexicon Based on Chinese Social Media Text[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[3] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[4] Ziming Zeng,Qianwen Yang. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[5] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[6] Sinan Yang,Jian Xu,Pingping Ye. Review of Online Sentiment Visualization Techniques[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[7] Yang Zhao,Qiqi Li,Yuhan Chen,Wenhang Cao. Examining Consumer Reviews of Overseas Shopping APP with Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(11): 19-27.
[8] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[9] Hongli Zhang,Jiying Liu,Sinan Yang,Jian Xu. Predicting Online Users’ Ratings with Comments[J]. 数据分析与知识发现, 2017, 1(8): 48-58.
[10] Ge Gao,Junmei Luo,Yu Wang. Analyzing Textual Sentiment Based on HNC Theory[J]. 数据分析与知识发现, 2017, 1(8): 85-91.
[11] Huanrong Shou,Shuqing Deng,Jian Xu. Detecting Online Rumors with Sentiment Analysis[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
[12] Chuanming Yu,Bolin Feng,Lu An. Sentiment Analysis in Cross-Domain Environment with Deep Representative Learning[J]. 数据分析与知识发现, 2017, 1(7): 73-81.
[13] Xinhui Dun,Yunqiu Zhang,Kaixi Yang. Fine-grained Sentiment Analysis Based on Weibo[J]. 数据分析与知识发现, 2017, 1(7): 61-72.
[14] Weifang Wu,Baojun Gao,Haixia Yang,Hanlin Sun. The Impacts of Reviews on Hotel Satisfaction: A Sentiment Analysis Method[J]. 数据分析与知识发现, 2017, 1(3): 62-71.
[15] Shuang Yang,Fen Chen. Analyzing Sentiments of Micro-blog Posts Based on Support Vector Machine[J]. 数据分析与知识发现, 2017, 1(2): 73-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938