Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (9): 50-58    DOI: 10.11925/infotech.2096-3467.2018.0157
Current Issue | Archive | Adv Search |
Growth Pattern of Online News Comments
Hong Zong,Chunxiang Xue(),Fen Chen
School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094, China
Download: PDF(672 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This study tries to identify the growth law of online news comments, aiming to explore their aging rules and potential values. [Methods] We proposed the growth measurement index of online news comments, including their growth cycle, growth peak, absolute concentration value, peak concentration index, and growth half-life. Then, we used online news and comments from to conduct an empirical study. [Results] We found that most online news comments had short growth cycles, low growth peaks, and earlier positions of peak concentrations. There were four leading growth patterns, including negative exponential, flat, uni-modal and multi-band. The growth of online news comments is affected by the aging of news, the time of news release, as well as the occurrence of relevant or the follow-up events. [Limitations] The sample data was from one website. [Conclusions] This paper analyzes the growth law of online news comments and identifies four types of growth patterns.

Key wordsOnline News Comments      User Comments      Information Obsolescence      Growth Pattern     
Received: 06 February 2018      Published: 25 October 2018

Cite this article:

Hong Zong,Chunxiang Xue,Fen Chen. Growth Pattern of Online News Comments. Data Analysis and Knowledge Discovery, 2018, 2(9): 50-58.

URL:     OR

[1] Dodds P S, Harris K D, Kloumann I M, et al.Temporal Patterns of Happiness and Information in a Global Social Network: Hedonometrics and Twitter[J]. PLoS ONE, 2011, 6(12): e26752.
[2] Parkhe V, Biswas B.Sentiment Analysis of Movie Reviews: Finding Most Important Movie Aspects Using Driving Factors[J]. Soft Computing, 2016, 20(9): 3373-3379.
[3] Gosnell C F.Obsolescence of Books in College Libraries[J]. College and Research Libraries, 1944, 5(2): 115-125.
[4] 陈京莲. 文献老化和网络信息老化研究[J]. 情报探索, 2014(11): 98-101.
[4] (Chen Jinglian.Research on Document Obsolescence and Web Information Obsolescence[J]. Information Research, 2014(11): 98-101.)
[5] 王真真. 基于新浪微博的信息老化规律实证研究[D]. 哈尔滨:黑龙江大学,2016.
[5] (Wang Zhenzhen.Empirical Study of Information Obsolescence Based on Sina Weibo[D]. Harbin: Heilongjiang University, 2016.)
[6] Germain C A.URLs: Uniform Resource Locators or Unreliable Resource Locator[J]. College & Research Libraries, 2000, 61(4): 359-365.
[7] 朱梦娴, 许鸿翔, 高静. 不同内容网络信息资源的半衰期比较研究[J]. 情报杂志, 2010, 29(9): 29-32, 40.
[7] (Zhu Mengxian, Xu Hongxiang, Gao Jing.A Comparative Study of Half-life of Network Information Resources with Different Contents[J]. Journal of Intelligence, 2010, 29(9): 29-32, 40.)
[8] 鞠菲. 网络信息老化实证研究——以新浪新闻为例[J]. 情报杂志, 2010, 29(10): 41-45, 40.
[8] (Ju Fei.The Empirical Study of the Aging of Web Information——A Case Study of the News on[J]. Journal of Intelligence, 2010, 29(10): 41-45, 40.)
[9] 殷珂. 安徽省高校微博信息老化案例分析[D]. 合肥: 安徽大学, 2017.
[9] (Yin Ke.Case Analysis of Micro-blog Information Aging in Anhui Colleges and Universities[D]. Hefei: Anhui University, 2017.)
[10] Zhang Z F, Li Q D, Zeng D.Mining Evolutionary Topic Patterns in Community Question Answering Systems[J]. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2011, 41(5): 828-833.
[11] Cao J, Ngo C, Zhang Y, et al.Tracking Web Video Topics: Discovery, Visualization and Monitoring[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2011, 21(12): 1835-1846.
[12] Cataldi M, Di C L, Schifanella C.Emerging Topic Detection on Twitter Based on Temporal and Social Terms Evaluation[C]//Proceedings of the 10th International Workshop on Multimedia Data Mining(MDMKDD’10), Washington, DC, USA. 2010.
[13] 马费成, 夏永红. 网络信息的生命周期实证研究[J]. 情报理论与实践, 2009, 32(6): 1-7.
[13] (Ma Feicheng, Xia Yonghong.Empirical Study of Lifecycle of Network Information[J]. Information Studies: Theory & Application, 2009, 32(6): 1-7.)
[14] 唐晓波, 涂海丽. 社会化媒体信息生命周期实证研究[J]. 图书馆学研究, 2014 (18):37-43.
[14] (Tang Xiaobo, Tu Haili.Empirical Study on the Lifecycle of Social Media Information[J]. Research on Library Science, 2014(18): 37-43.)
[15] 易臣何. 突发事件网络舆情的演化规律与政府监控[D]. 湘潭: 湘潭大学, 2014.
[15] (Yi Chenhe.On the Evolvement Rule and Government Surveillance of Public Opinion about Emergency[D]. Xiangtan: Xiangtan University, 2014.)
[16] 梁芷铭. 基于新浪微博的网络信息生命周期实证研究[J]. 新闻界, 2014(3): 60-64, 69.
[16] (Liang Zhiming.Empirical Study of Web Information Lifecycle Based on Sina Weibo[J]. Press Circles, 2014(3): 60-64, 69.)
[17] 姜祎, 赵苹. 信息生命周期交叠现象研究——以泛在信息环境中的表现为例[J]. 图书情报工作, 2014, 58(19): 45-52.
[17] (Jiang Yi, Zhao Ping.Research on Information Lifecycle Overlap —— Taking the Performance in Ubiquitous Information Environment as Example[J]. Library and Information Service, 2014, 58(19): 45-52.)
[18] Chen C C, Chen Y, Sun Y S, et al.Life Cycle Modeling of News Events Using Aging Theory[C]//Proceedings of the 14th European Conference on Machine Learning. 2003: 47-59.
[19] 曾艺林. 涉官网络谣言演化过程研究[D]. 武汉: 华中科技大学, 2014.
[19] (Zeng Yilin.A Study on the Evolution of Internet Rumors Involving Officers[D]. Wuhan: Huazhong University of Science and Technology, 2014.)
[20] 王旭, 孙瑞英. 基于SNA的突发事件网络舆情传播研究——以“魏则西事件”为例[J]. 情报科学, 2017, 35(3): 87-92.
[20] (Wang Xu, Sun Ruiying.Research about Online Public Opinion Spread During Emergencies Based on Social Network Analysis——A Case Study of the Wei Zexi[J]. Information Science, 2017, 35(3): 87-92.)
[21] 武超群. 网络环境下公共危机治理研究[D]. 北京: 中央财经大学, 2016.
[21] (Wu Chaoqun.The Public Crisis Governance Research in Internet Environment[D]. Beijing: Central University of Finance and Economics, 2016.)
[1] Xiuxian Wen,Jian Xu. Research on Product Characteristics Extraction and Hedonic Price Based on User Comments[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[2] Zhen Zhang,Jin Zeng. Extracting Keywords from User Comments: Case Study of Meituan[J]. 数据分析与知识发现, 2019, 3(3): 36-44.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938