Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (7): 63-71    DOI: 10.11925/infotech.2096-3467.2018.0179
Current Issue | Archive | Adv Search |
Research on Collaborative Filtering Traveling Products Recommendation Algorithm Based on IUNCF
Ya’nan Zhao1(),Yuqing Wang2
1School of Economics and Management, Tongji University, Shanghai 200092, China
2School of Economics and Management, University of Shanghai for Science and Technology, Shanghai 200093, China
Download: PDF(1378 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to address the challenges facing Smart Tourism industry, such as data sparseness and cold start, with the help of collaborative recommendation technology. [Methods] First, we clustered users with the K-means algorithm and then filtered and classified them dynamically based on the combination of collaborative recommendation technology. Then, we assigned weight to the recommended types and proposed a new algorithm based on Improved Uncertain Neighbors Collaborative Filtering (IUNCF). Finally, we examined the proposed algorithm with real world tourism data of different similarity thresholds and recommended numbers. [Results] The MAE value and F-measure reached 0.243 and 0.764, which showed the effectiveness of IUNCF in accuracy and reliability. [Limitations] The IUNCF algorithm needs to be further optimized to deal with the low frequency consumption issue. We could also extend the application of this new model. [Conclusions] The proposed IUNCF algorithm could precisely recommend smart tourism products to the consumers.

Key wordsTravel Recommendations      Uncertain Neighbors      Similarity Threshold      Collaborative Recommendation     
Received: 11 February 2018      Published: 15 August 2018

Cite this article:

Ya’nan Zhao,Yuqing Wang. Research on Collaborative Filtering Traveling Products Recommendation Algorithm Based on IUNCF. Data Analysis and Knowledge Discovery, 2018, 2(7): 63-71.

URL:     OR

[1] 中国国家旅游局. 中国旅游经济蓝皮书(No.10)[M]. 北京: 中国旅游出版社, 2017.
[1] (China Tourism Institute.China Tourism Economy Blue Book No.10[M]. Beijing: China Tourism Press, 2017.)
[2] 中国国家旅游局. 2015年中国旅游经济运行分析与2016年发展预测[M]. 北京: 中国旅游出版社, 2016.
[2] (China Tourism Institute.China Tourism Economy Analysis and Forecast of Development in 2016[M]. Beijing: China Tourism Press, 2016.)
[3] Nanopoulos A, Rafailidis D, Symeonidis P, et al.Musicbox: Personalized Music Recommendation Based on Cubic Analysis of Social Tags[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(2): 407-412.
[4] Harper F M, Konstan J A.The Movielens Datasets: History and Context[J]. ACM Transactions on Interactive Intelligent Systems, 2016, 5(4): 19.
[5] Adomavicius G, Tuzhilin A.Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge & Data Engineering, 2005, 17(6): 734-749.
[6] Dzyabura D, Hauser J R.Recommending Products When Consumers Learn Their Preferences[J]. Social Science Electronic Publishing, 2017, 55: 45-57.
[7] Jia Z, Yang Y, Gao W, et al.User-based Collaborative Filtering for Tourist Attraction Recommendations[C]// Proceedings of the 2015 IEEE International Conference on Computational Intelligence & Communication Technology. 2015: 22-25.
[8] Pirasteh P, Jung J J, Hwang D.Item-based Collaborative Filtering with Attribute Correlation: A Case Study on Movie Recommendation[A]//Intelligent Information and Database Systems[M]. Springer, 2014: 245-252.
[9] Sahoo N, Singh P V, Mukhopadhyay T.A Hidden Markov Model for Collaborative Filtering[J]. MIS Quarterly, 2012, 1329-1356.
[10] Ziani A, Azizi N, Schwab D, et al.Recommender System Through Sentiment Analysis[C]//Proceedings of the 2nd International Conference on Automatic Control, Telecommunications and Signals. 2017.
[11] Dakhel G M, Mahdavi M.A New Collaborative Filtering Algorithm Using K-means Clustering and Neighbors’ Voting[C]// Proceedings of the 11th International Conference on Hybrid Intelligent Systems. IEEE, 2011: 179-184.
[12] 李涛, 王建东, 叶飞跃, 等. 一种基于用户聚类的协同过滤推荐算法[J]. 系统工程与电子技术, 2007, 29(7): 1178-1182.
[12] (Li Tao, Wang Jiandong, Ye Feiyue, et al.A Collaborative Filtering Recommendation Algorithm Based on User Clustering[J]. Systems Engineering and Electronics, 2007, 29(7): 1178-1182.)
[13] 赵伟, 林楠, 韩英, 等. 一种改进的K-means聚类的协同过滤算法[J]. 安徽大学学报: 自然科学版, 2016, 40(2): 32-36.
[13] (Zhao Wei, Lin Nan, Han Ying, et al.User-based Collaborative Filtering Recommendation Algorithm Based on Improved K-means Clustering[J]. Journal of Anhui University: Natural Science Edition, 2016, 40(2): 32-36.)
[14] Sarwar B, Karypis G, Konstan J, et al.Item-based Collaborative Filtering Recommendation Algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. ACM, 2001: 285-295.
[15] 邓华平. 基于项目聚类和评分的时间加权协同过滤算法[J]. 计算机应用研究, 2015, 32(7): 1966-1969.
[15] (Deng Huaping.Time-Weighted Collaborative Filtering Algorithm Based on Item Clustering and Scoring[J]. Application Research of Computers, 2015, 32(7): 1966-1969.)
[16] 王晓耘, 钱璐, 黄时友. 基于粗糙用户聚类的协同过滤推荐模型[J]. 现代图书情报技术, 2015(1): 45-51.
[16] (Wang Xiaoyun, Qian Lu, Huang Shiyou.Collaborative Filtering Recommendation Model Based on Rough User Clustering[J]. New Technology of Library and Information Service, 2015(1): 45-51.)
[17] Nilashi M, Bin Ibrahim O, Ithnin N, et al.A Multi-criteria Collaborative Filtering Recommender System for the Tourism Domain Using Expectation Maximization (EM) and PCA-ANFIS[J]. Electronic Commerce Research and Applications, 2015, 14(6): 542-562.
[18] 黄创光, 印鉴, 汪静, 等. 不确定近邻的协同过滤推荐算法[J]. 计算机学报, 2010, 33(8): 1369-1377.
[18] (Huang Chuangguang, Yin Jian, Wang Jing, et al.Collaborative Filtering Recommendation Algorithm for Uncertain Neighbors[J]. Journal of Computer, 2010, 33(8): 1369-1377.)
[19] 范波, 程久军. 用户间多相似度协同过滤推荐算法[J]. 计算机科学, 2012, 39(1): 23-26.
[19] (Fan Bo, Cheng Jiujun.Collaborative Filtering Recommendation Algorithm for Multiple Similarity Among Users[J]. Computer Science, 2012, 39(1): 23-26.)
[20] 郑志高, 刘京, 王平, 等. 时间加权不确定近邻协同过滤算法[J]. 计算机科学, 2014, 41(8): 7-12.
[20] (Zheng Zhigao, Liu Jing, Wang Ping, et al.Time Weighted Uncertain Nearest Neighbor Collaborative Filtering Algorithm[J]. Computer Science, 2014, 41(8): 7-12.)
[1] Yan Duanwu,Luo Shengyang,Cheng Xiao . Toward User-Document Matrix Based User Clustering for Collaborative Recommendation[J]. 现代图书情报技术, 2007, 2(3): 25-28.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938