Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (12): 60-67    DOI: 10.11925/infotech.2096-3467.2018.0200
Current Issue | Archive | Adv Search |
Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model
Fen Chen(),Xi Fu,Yuan He,Chunxiang Xue
School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
The Priority Academic of Jiangsu Higher Education Institutions, Nanjing 210094, China
Download: PDF(559 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to identify Weibo opinion leaders with the help of social network analysis and influence diffusion model. [Methods] First, we analyzed the opinion leaders’ characteristics based on the social network analysis. Then we optimized the existing influence diffusion model from the perspectives of impact scope and extent. Finally, we applied the new model to find opinion leaders. [Results] Compared with the models built on centrality analysis or semantic similarity, the optimized model obtained better ranking for opinion leaders, which was consistent with the Weibo data. [Limitations] Only examined the proposed method with data on GMO foods. [Conclusions] The proposed model could effectively identify the Weibo opinion leaders.

Key wordsSocial Network Analysis      Opinion Leader      IDM      Food Safety     
Received: 26 February 2018      Published: 16 January 2019

Cite this article:

Fen Chen,Xi Fu,Yuan He,Chunxiang Xue. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model. Data Analysis and Knowledge Discovery, 2018, 2(12): 60-67.

URL:     OR

[1] 中国互联网络信息中心. 2015年中国社交应用用户行为研究报告[R/OL]. [2018-06-25]. .
[1] (China Internet Network Information Center. 2015 Research Report on China Social Application User Behavior [R/OL]. [2018-06-25].
[2] Lazarsfeld P F, Berelson B, Gaudet H.The People’s Choice: How the Voter Makes Up His Mind in a Presidential Campaign[M]. New York: Columbia University Press, 1948.
[3] 毛海俊. 基于新意见领袖论的社会化媒体传播研究[D]. 沈阳: 辽宁大学, 2014.
[3] (Mao Haijun.Research on Dissemination of Social Media Based on the Theory of New Opinion Leaders[D]. Shenyang: Liaoning University, 2014.)
[4] 付希. 基于社会网络分析的微博意见领袖发现研究[D]. 南京: 南京理工大学, 2016.
[4] (Fu Xi.Research on Weibo Opinion Leader Discovery Based on Social Network Analysis[D]. Nanjing: Nanjing University of Science & Technology, 2016.)
[5] 李卓卓, 丁子涵. 基于社会网络分析的网络舆论领袖发掘——以大学生就业舆情为例[J]. 情报杂志, 2011, 30(11): 67-71.
[5] (Li Zhuozhuo, Ding Zihan.Exploring Online Opinion Leadership Based on Social Network Analysis——Public Opinion of College Student Employment Taken for Example[J]. Journal of Intelligence, 2011, 30(11): 67-71.)
[6] Zhou H M, Zeng D, Zhang C L.Finding Leaders from Opinion Networks[C]// Proceedings of the 2009 IEEE International Conference on Intelligence and Security Informatics. 2009: 266-268.
[7] 高俊波, 杨静. 在线论坛中的意见领袖分析[J]. 电子科技大学学报, 2007, 36(6): 1249-1252.
[7] (Gao Junbo, Yang Jing.Analysis of Opinion Leader in On-Line Communities[J]. Journal of University of Electronic Science and Technology of China, 2007, 36(6): 1249-1252.)
[8] 余重远, 李珊, 赵文, 等. 基于SNA的网络舆论领袖确定方法研究[J]. 科技信息, 2011(12): 36-37.
[8] (Yu Chongyuan, Li Shan, Zhao Wen, et al.Research on Determining Methods of Internet Opinion Leader Based on SNA[J]. Science & Technology Information, 2011(12): 36-37.)
[9] 丁雪峰, 刘嘉勇, 吴越, 等. 基于SNA的网络舆论意见领袖识别研究[J]. 高技术通讯, 2011, 21(2): 167-172.
[9] (Ding Xuefeng, Liu Jiayong, Wu Yue, et al.Study on Identification of Internet Public Opinion Leaders Based on SNA[J]. High Technology Letters, 2011, 21(2): 167-172.)
[10] Chen Y C, Cheng J Y, Hsu H H.A Cluster-Based Opinion Leader Discovery in Social Network[C]// Proceedings of the 2016 Conference on Technologies and Applications of Artificial Intelligence. IEEE, 2017: 78-83.
[11] Sun G, Sheng B.A New Opinion Leaders Detecting Algorithm in Multi-Relationship Online Social Networks[J]. Multimedia Tools & Applications, 2018, 77(4): 4295-4307.
[12] Dewi F K, Yudhoatmojo S B, Budi I.Identification of Opinion Leader on Rumor Spreading in Online Social Network Twitter Using Edge Weighting and Centrality Measure Weighting[C]// Proceedings of the 12th International Conference on Digital Information Management. IEEE, 2018.
[13] Gotecha M R, Patwardhan M S.Identification of Key Opinion Leaders in Healthcare Domain Using Weighted Social Network Analysis[C]// Proceedings of the 2016 International Conference on Computing Communication Control and Automation. 2017.
[14] Yang L, Qiao Y F, Liu Z H, et al.Identifying Opinion Leader Nodes in Online Social Networks with a New Closeness Evaluation Algorithm[J]. Soft Computing, 2018, 22(2): 453-464.
[15] 李玉贞, 胡勇, 熊熙, 等. 微博意见领袖的评估模型[J]. 信息安全与通信保密, 2013(2): 79-81.
[15] (Li Yuzhen, Hu Yong, Xiong Xi, et al.Evaluation Model of Micro-blog Opinion Leader[J]. Information Security and Communications Privacy, 2013(2): 79-81.)
[16] Kwak H, Lee C, Park H, et al.What is Twitter, a Social Network or a News Media?[C]//Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 591-600.
[17] Cha M, Haddadi H, Benevenuto F, et al.Measuring User Influence in Twitter: The Million Follower Fallacy[C] //Proceedings of the 4th International AAAI Conference on Weblogs & Social Media. 2010: 10-17.
[18] Aleahmad A, Karisani P, Rahgozar M, et al.OLFinder: Finding Opinion Leaders in Online Social Networks[J]. Journal of Information Science, 2016, 42(5): 1-18.
[19] Matsumura N, Ohsawa Y, Ishizuka M.Influence Diffusion Model in Text Based Communication[J]. Transactions of the Japanese Society for Artificial Intelligence, 2002, 17(3): 259-267.
[20] 陈云芳, 夏涛, 张伟, 等. 基于亲和传播的动态社会网络影响力扩散模型[J]. 通信学报, 2016, 37(10): 40-47.
[20] (Chen Yunfang, Xia Tao, Zhang Wei, et al.Influence Diffusion Model Based on Affinity of Dynamic Social Network[J]. Journal on Communications, 2016, 37(10): 40-47.)
[21] 孙国梓, 仇呈燕, 李华康. 基于线性加权的微博影响力量化模型[J]. 四川大学学报: 工程科学版, 2016, 48(1): 78-84.
[21] (Sun Guozi, Qiu Chengyan, Li Huakang.MIQM: Micro-blog Influence Quantification Model Based on Linear Weight[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48(1): 78-84.)
[22] 程慧平, 余凡. 基于语义Web的社会网络分析应用模型研究[J]. 情报科学, 2011, 29(4): 614-618.
[22] (Cheng Huiping, Yu Fan.Research on Application Model of Semantic Web-based Social Network Analysis[J]. Information Science, 2011, 29(4): 614-618.)
[23] 林聚任. 社会网络分析:理论、方法与应用[M] . 北京: 北京师范大学出版社, 2009.
[23] (Lin Juren.Social Network Analysis: Theory, Method and Application [M]. Beijing: Beijing Normal University Publishing Group, 2009.)
[24] 韩运荣, 高顺杰. 微博舆论中的意见领袖素描——一种社会网络分析的视角[J]. 新闻与传播研究, 2012, 19(3): 61-69.
[24] (Han Yunrong, Gao Shunjie.Opinion Leader’s Sketch in Weibo Public Opinion——A Perspective of Social Network Analysis[J]. Journalism & Communication, 2012, 19(3): 61-69.)
[1] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[2] Zhongyi Wang,Heming Zhang,Jing Huang,Chunya Li. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[3] Yue He,Can Zhu. Sentiment Analysis of Weibo Opinion Leaders——Case Study of “Illegal Vaccine” Event[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[4] Fei Li,Jian Zhang,Zongshui Wang. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[5] Xiwei Wang,Liu Zhang,Shimeng Li,Nan’axue Wang. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[6] Ruxia Fan,Jianxun Zeng,Yaruixi Gao. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[7] Dongbo Wang,Yi Wu,Wenhao Ye,Ruilun Liu. Extracting Events of Food Safety Emergencies with Characteristics Knowledge[J]. 数据分析与知识发现, 2017, 1(3): 54-61.
[8] Yue Zhang,Dongbo Wang,Danhao Zhu. Segmenting Chinese Words from Food Safety Emergencies[J]. 数据分析与知识发现, 2017, 1(2): 64-72.
[9] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[10] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[11] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[12] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[13] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[14] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
[15] Huang Wei, Gao Junfeng, Wang Chen, Qi Yue. Research on a Method of Implicit Knowledge Push Service Based on Social Network Analysis[J]. 现代图书情报技术, 2014, 30(2): 48-54.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938