Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (11): 80-94    DOI: 10.11925/infotech.2096-3467.2018.0293
Current Issue | Archive | Adv Search |
Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis
Zhongyi Wang1,Heming Zhang1,Jing Huang2,Chunya Li3()
1School of Information Management, Central China Normal University, Wuhan 430079, China
2Wuhan Polytechnic, Wuhan 430074, China
3School of Business, Nantong Institute of Technology, Nantong 226002,China
Download: PDF(3421 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective]This paper analyzes the social network structure and knowledge dissemination mechanism of an online Q&A community, aiming to reveal the role of network nodes, and improve the learning efficiency. [Methods] First, we used the social network analysis and the entropy weight methods to describe the opinion leader’s knowledge and influence. Then, we built a knowledge dissemination model based on the Cowan model for the Q&A community. Finally, we examined the internal knowledge learning results of the network through system simulation. [Results] Ⅰ. The nodes with less knowledge had higher learning efficiency in the target network; Ⅱ. The knowledge volumes of some nodes increased rapidly, while those of the nodes with larger knowledge stock increased slowly; Ⅲ. The knowledge dissemination rate of this network has been decreasing; Ⅳ. There is strong correlation between knowledge increase and the index of knowledge and communication abilities. [Limitations] The dynamic random reconnection of network was not examined in this paper. [Conclusions] This paper offers practical advice to improve users’ learning experience in the online Q&A community.

Key wordsSocial Network Analysis      Information Entropy      Knowledge Dissemination      Cowan Model      Spongy Effect     
Received: 16 March 2018      Published: 11 December 2018

Cite this article:

Zhongyi Wang,Heming Zhang,Jing Huang,Chunya Li. Studying Knowledge Dissemination of Online Q&A Community with Social Network Analysis. Data Analysis and Knowledge Discovery, 2018, 2(11): 80-94.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.0293     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I11/80

[1] 韦勇娇. 认知盈余时代, 网络问答社区的知识传播模式探析——以“知乎”为例[J]. 广西职业技术学院学报, 2014, 7(1): 30-34, 40.
[1] (Wei Yongjiao.Analysis of Modes of Knowledge Dissemination Online Q&A——A Case Study of Zhihu Q&A Website[J]. Journal of Guangxi Vocational and Technical College, 2014, 7(1): 30-34, 40.)
[2] 吕峰. 基于隐马尔科夫模型的问答社区用户知识贡献意愿研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[2] (Lv Feng.Research on the Knowledge Contribution Intention in Q&A Community Based on Hidden Markov Model[D]. Harbin: Harbin Institute of Technology, 2015.)
[3] 金家华. 社会化问答社区中用户知识行为的影响因素研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.
[3] (Jin Jiahua.Research on the Influence Factors of User’s Knowledge Activities in Online Social Q&A Community[D]. Harbin:Harbin Institute of Technology, 2015.)
[4] 陈娟, 高杉, 邓胜利. 社会化问答用户特征识别与行为动机分析——以“知乎”为例[J]. 情报科学, 2017, 35(5): 69-74, 80.
[4] (Chen Juan, Gao Shan, Deng Shengli.Characteristics Recognition and Motivation Analysis of Social Q&A Users——A Case Study of ‘Zhihu’ Website[J]. Information Science, 2017, 35(5): 69-74, 80.)
[5] 黄梦婷, 张鹏翼. 社会化问答社区的协作方式与效果研究: 以知乎为例[J]. 图书情报工作, 2015, 59(12): 85-92.
[5] (Huang Mengting, Zhang Pengyi.Collaboration Forms and Effectiveness in Social Q&A Communities: A Case Study of Zhihu.com[J]. Library and Information Service, 2015, 59(12): 85-92.)
[6] 刘佩, 林如鹏. 网络问答社区“知乎”的知识分享与传播行为研究[J]. 图书情报知识, 2015(6): 109-119.
[6] (Liu Pei, Lin Rupeng.Research on Knowledge Sharing and Dissemination Behavior of Online Q&A Services: Taking Zhihu as an Example[J]. Documentation, Information & Knowledge, 2015(6): 109-119.)
[7] Liu Z, Jansen B J.Questioner or Question: Predicting the Response Rate in Social Question and Answering on Sina Weibo[J]. Information Processing & Management, 2018, 54(2): 159-174.
[8] Jin J, Li Y, Zhong X, et al.Why Users Contribute Knowledge to Online Communities: An Empirical Study of an Online Social Q&A Community[J]. Information & Management, 2015, 52(7): 840-849.
[9] Lou J, Fang Y, Lim K H, et al.Contributing High Quantity and Quality Knowledge to Online Q&A Communities[J]. Journal of the Association for Information Science and Technology, 2013, 64(2): 356-371.
[10] 左遥, 梁英, 毕晓迪, 等. 社会化问答网站知识传播网络推断方法[J]. 计算机学报, 2018, 41(1): 82-97.
[10] (Zuo Yao, Liang Ying, Bi Xiaodi, et al.An Inference Method of Knowledge Diffusion Network in Community Question Answering Sites[J]. Chinese Journal of Computers, 2018, 41(1): 82-97.)
[11] 宁菁菁. 基于“弱关系理论”的知识问答社区知识传播研究——以知乎网为例[J]. 新闻知识, 2014(2): 98-99,50.
[11] (Ning Jingjing.Research on Knowledge Communication in Knowledge Q&A Community Based on “Weak Relationship Theory”—— A Case Study of Zhihu Network[J]. News Research, 2014(2): 98-99, 50.)
[12] Cowan R, Jonard N.Network Structure and the Diffusion of Knowledge[J]. Journal of Economics Dynamics and Control, 2004, 28(8): 1557-1575
[13] Matlab [K/OL]. [2018-04-13].https://www.mathworks.com/.
[14] 王嘉. 思想政治教育视域下的网络意见领袖研究[D]. 大连: 大连理工大学, 2013.
[14] (Wang Jia.Researches on Network Opinion Leader for Ideological and Political Education [D]. Dalian: Dalian University of Technology, 2013.)
[15] 赵基明, 邱均平, 黄凯, 等. 一种新的科学计量指标——h指数及其应用述评[J]. 中国科学基金, 2008(1): 23-32.
[15] (Zhao Jiming, Qiu Junping, Huang Kai, et al.A New Scientometric Indicator——Review on h Index and Its Application[J]. Bulletin of National Natural Science Foundation of China, 2008(1): 23-32.)
[16] Rstudio [K/OL]. [2018-04-13]..
[17] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012: 233.
[17] (Wang Xiaofan, Li Xiang, Chen Guanrong.Network Science: An Introduction[M]. Beijing: Higher Education Press, 2012: 233.)
[18] Tan P-N, Steinbach M, Kumar V.数据挖掘导论(完整版) [M]. 范明, 范宏建等译. 北京: 人民邮电出版社, 2011: 38-39.
[18] (Tan P-N, Steinbach M, Kumar V.Introdution to Data Mining[M]. Translated by Fan Ming, Fan Hongjian, et al. Beijing: Post & Telecom Press, 2011: 38-39.)
[19] 张继国, 辛格. 信息熵——理论与应用[M]. 北京: 中国水利水电出版社, 2012:1-2.
[19] (Zhang Jiguo, Singh V P.Information Entropy——Theory and Application[M]. Beijing: China Water & Power Press, 2012: 1-2.)
[20] 芦白茹, 张坤严, 心娥, 等. 基于AHP法和熵权法组合权重对RC结构危险房屋多层次模糊综合评定研究[C]. 见: 第25届全国结构工程学术会议论文集, 2016: 89.
[20] (Lu Bairu, Zhang Kuyan, Xin E, et al.Multi-hierarchy Fuzzy Comprehensive Assessment of RC Structure Dangerous Buildings Based on Combined Weights of AHP and Entropy-weighted Method[C]// Proceedings of the 25th National Conference on Structural Engineering. 2016: 89.)
[21] Shannon C E.A Mathematical Theory of Communication[J]. Bell System Technical Journal, 1948, 27(3): 379-423.
[22] Kermack W O, McKendrick A G. Contributions to the Mathematical Theory of Epidemics. II.—The Problem of Endemicity[J]. Proceedings of the Royal Society of London A, 1932, 138(834): 55-83.
[23] 李中师. 基于个体差异的复杂网络下隐性知识传播模型研究[D]. 杭州: 浙江工业大学, 2012.
[23] (Li Zhongshi.Study of Tacit Knowledge Transfer Based on Individual Differences in Complex Social Networks[D]. Hangzhou: Zhejiang University of Technology, 2012.)
[24] 张红兵. 虚拟企业知识转移的研究[M]. 北京: 经济管理出版社, 2009: 56.
[24] (Zhang Hongbing.Research on the Knowledge Transfer in Virtual Enterprise[M]. Beijing: Economics & Management Publishing House, 2009: 56.)
[25] 汪应洛. 系统工程[M]. 第4版. 北京: 机械工业出版社, 2008: 82.
[25] (Wang Yingluo. System Engineering[M]. The 4th Edition. Beijing: China Machine Press, 2008: 82.)
[1] Xiaoting Jia,Mingyang Wang,Yu Cao. Automatic Abstracting of Chinese Document with Doc2Vec and Improved Clustering Algorithm[J]. 数据分析与知识发现, 2018, 2(2): 86-95.
[2] Fen Chen,Xi Fu,Yuan He,Chunxiang Xue. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[3] Fei Li,Jian Zhang,Zongshui Wang. Review of Social Recommendation with Bibliometrics and Social Network Analysis[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[4] Xiwei Wang,Liu Zhang,Shimeng Li,Nan’axue Wang. The Dissemination of Online Public Opinion on Social Welfare Issues via New Media: Case Study of “Draw up the Lifeline” in Sina Weibo[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
[5] Ruxia Fan,Jianxun Zeng,Yaruixi Gao. Recognizing Dynamic Academic Impacts of Scholars Based on Cooperative Network[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[6] Wang Yuefen,Jin Jialin. Characteristics and Development Trends of Papers from “New Technology of Library and Information Service”[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[7] Wu Huijuan,Jia Tina Du,Sun Hongfei,Jannatul Fardous. Identifying Core Users in Social Resource Recommendation System with K-shell Collapse Sequences[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[8] Ye Teng,Han Lichuan,Xing Chunxiao,Zhang Yan. Knowledge Dissemination Mechanism in Virtual Communities: Case Study Based on Complex Network Theory[J]. 现代图书情报技术, 2016, 32(7-8): 70-77.
[9] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[10] Ren Ni, Zhou Jiannong. The Discovery and Evaluation of Research Team Under the Mode of Weighted Co-Author Network[J]. 现代图书情报技术, 2015, 31(9): 68-75.
[11] Zhai Shanshan, Xu Xin, Xia Lixin. A Review of User Communication and Knowledge Dissemination in Academic Blogs[J]. 现代图书情报技术, 2015, 31(7-8): 3-12.
[12] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking ScienceNet.cn Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[13] Zhang Yongyun, Zhang Shengtai. Star Effect and Broker Effect in Social Media Knowledge Collaboration Network: Discovery from Wikipedia Social Media[J]. 现代图书情报技术, 2015, 31(4): 72-78.
[14] He Yue, Song Lingxi, Qi Liyun. Spillover Effect of Internet Word of Mouth in Negative Events——Take the “Deadly Yuantong Express” Event for an Example[J]. 现代图书情报技术, 2015, 31(10): 58-64.
[15] Huang Wei, Gao Junfeng, Li Rui, Zhou Shanshan. Research on Semantic Distance Measurement and Visualization of Tags in Folksonomy[J]. 现代图书情报技术, 2014, 30(7): 64-70.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn