Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (9): 88-99    DOI: 10.11925/infotech.2096-3467.2018.0342
Current Issue | Archive | Adv Search |
Classifying Multilayer Social Network Links Based on Transfer Component Analysis
Wu Jiehua1,2(), Shen Jing1, Zhou Bei1
1College of Computer Science and Information Engineering, Guangdong Polytechnic of Industry and Commerce, Guangzhou 510510, China
2School of Computer and Engineering, South China University of Technology, Guangzhou 510641, China
Download: PDF (980 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper aims to address the issues facing multi-layer social network link classification algorithms, which cannot effectively correlate information among sub-networks to improve classification. [Methods] First, we defined the common features reflecting the correlation between sub-network. Then we defined individuality features reflecting the characteristics of each sub-network’s own attributes. Third, we proposed an algorithm to classify multilayer social network links based on transfer component analysis. This algorithm collects characteristics of the correlation between layers, which makes sub-networks learn from each other. [Results] We compared the proposed model with the benchmark classification algorithm, feature selection based classification algorithm, and the benchmark transfer based classification algorithm on two real multi-layer datasets from YouTube and QueryLog. The performance of our algorithm on evaluation metrics of AUC and ROC curves were significantly improved. The evaluation index of the larger promotion curve has at least 1.57% and at most 33.2% improvement. [Limitations] We did not examine very large-scale network data with the proposed model. The relationship between the layers and performance of feature definition needs more discussion. [Conclusions] The proposed method effectively applies transfer learning to the classification of multilayer social network links and offers new directions for future studies.

Key wordsMultilayer Network      Social Network      Link Classification      Component Analysis      Transfer Learning     
Received: 28 March 2018      Published: 25 October 2018
ZTFLH:  分类号: TP391 G35  

Cite this article:

Wu Jiehua,Shen Jing,Zhou Bei. Classifying Multilayer Social Network Links Based on Transfer Component Analysis. Data Analysis and Knowledge Discovery, 2018, 2(9): 88-99.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.0342     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I9/88

网络 节点 关系 链接 平均度 聚类系数 平均共邻节点
YouTube 1 000 Friends(F) 8 915 36.61 0.56 6.14
Subscriptions(S) 31 282 129.59 0.71 21.74
Videos(V) 11 472 47.44 0.52 9.34
QueryLog 757 Bin1 13 764 36.36 0.53 10.18
Bin2 11 994 31.69 0.49 8.49
Bin3 9 037 22.29 0.44 6.77
r=0.8 S→F V→F F→S V→S F→V S→V
LR 0.5168(±0.267) 0.5173(±0.225) 0.5188(±0.326) 0.4872(±0.207) 0.5528(±0.317) 0.5498(±0.382)
SVM 0.5771(±0.571) 0.5747(±0.548) 0.5742(±0.595) 0.5786(±0.601) 0.5949(±0.573) 0.5977(±0.662)
FS-LR 0.5304(±0.389) 0.5337(±0.527) 0.5279(±0.636) 0.5263(±0.676) 0.6091(±0.882) 0.6042(±0.832)
FS-SVM 0.6042(±0.428) 0.6066(±0.444) 0.5848(±0.532) 0.5853(±0.593) 0.6345(±0.712) 0.6336(±0.688)
TLR 0.5207(±0.396) 0.6587(±0.356) 0.5682(±0.428) 0.5526(±0.433) 0.6257(±0.498) 0.5531(±0.524)
TSVM 0.6323(±0.436) 0.6911(±0.424) 0.6359(±0.449) 0.6343(±0.382) 0.6967(±0.507) 0.5699(±0.442)
TCA 0.6889(±0.547) 0.7048(±0.627) 0.7789(±0.673) 0.7548(±0.752) 0.8109(±0.736) 0.7925(±0.627)
r =0.9 S→F V→F F→S V→S F→V S→V
LR 0.4936(±0.243) 0.4939(±0.182) 0.4632(±0.221) 0.4628(±0.234) 0.5364(±0.322) 0.5345(±0.442)
SVM 0.5592(±0.615) 0.5603(±0.627) 0.5586(±0.532) 0.5577(±0.657) 0.5862(±0.581) 0.5862(±0.626)
FS-LR 0.5112(±0.434) 0.5118(±0.425) 0.5029(±0.453) 0.5049(±0.417) 0.5703(±0.633) 0.5853(±0.548)
FS-SVM 0.5855(±0.508) 0.5873(±0.486) 0.5676(±0.597) 0.5774(±0.536) 0.6035(0.727) 0.6044(±0.793)
TLR 0.4922(±0.354) 0.6411(±0.415) 0.5421(±0.428) 0.5281(±0.519) 0.6011(±0.463) 0.5352(±0.457)
TSVM 0.6068(±0.487) 0.6748(±0.397) 0.6077(±0.458) 0.6081(±0.425) 0.6752(±0.686) 0.5524(±0.417)
TCA 0.6677(±0.679) 0.6854(±0.682) 0.7638(±0.774) 0.7328(±0.746) 0.7924(±0.611) 0.7781(±0.615)
r=0.8 Bin2→Bin1 Bin3→Bin1 Bin1→Bin2 Bin3→Bin2 Bin1→Bin3 Bin2→Bin3
LR 0.5425(±0.284) 0.5476(±0.245) 0.4983(±0.309) 0.5184(±0.228) 0.4947(±0.302) 0.5058(±0.359)
SVM 0.5492(±0.456) 0.5487(±0.472) 0.5624(±0.544) 0.5779(±0.430) 0.5237(±0.573) 0.5277(±0.662)
FS-LR 0.5480(±0.339) 0.5471(±0.315) 0.4957(±0.582) 0.5187(±0.628) 0.4999(±0.857) 0.5132(±0.741)
FS-SVM 0.5523(±0.229) 0.5538(±0.254) 0.5672(±0.381) 0.5798(±0.430) 0.6345(±0.554) 0.6336(±0.513)
TLR 0.5472(±0.297) 0.5477(±0.331) 0.5080(±0.366) 0.5194(±0.327) 0.5008(±0.439) 0.5079(±0.515)
TSVM 0.5508(±0.302) 0.5532(±0.326) 0.5312(±0.385) 0.5866(±0.374) 0.5335(±0.487) 0.5332(±0.468)
TCA 0.8108(±1.782) 0.8176(±1.856) 0.7782(±1.654) 0.7582(±1.788) 0.8024(±1.459) 0.8045(±1.565)
r =0.9 Bin2→Bin1 Bin3→Bin1 Bin1→Bin2 Bin3→Bin2 Bin1→Bin3 Bin2→Bin3
LR 0.5286(±0.298) 0.5278(±0.122) 0.4747(±0.215) 0.4802(±0.272) 0.4957(±0.303) 0.4981(±0.371)
SVM 0.5428(±0.475) 0.5433(±0.472) 0.5482(±0.528) 0.5492(±0.552) 0.5039(±0.466) 0.5082(±0.549)
FS-LR 0.5288(±0.418) 0.5282(±0.413) 0.4832(±0.339) 0.4884(±0.306) 0.4998(±0.462) 0.5074(±0.505)
FS-SVM 0.5467(±0.505) 0.5472(±0.441) 0.5561(±0.610) 0.5605(±0.633) 0.5089(±0.754) 0.5113(±0.779)
TLR 0.5237(±0.356) 0.5277(±0.301) 0.5073(±0.417) 0.5082(±0.485) 0.5117(±0.527) 0.5098(±0.533)
TSVM 0.5488(±0.536) 0.5392(±0.467) 0.5462(±0.538) 0.5433(±0.561) 0.5291(±0.758) 0.5232(±0.685)
TCA 0.7821(±1.527) 0.7847(±1.538) 0.7154(±1.475) 0.6816(±1.423) 0.7782(±1.644) 0.7866(±1.595)
[1] Kim J, Hastak M.Social Network Analysis: Characteristics of Online Social Networks After a Disaster[J]. International Journal of Information Management, 2018, 38(1): 86-96.
doi: 10.1016/j.ijinfomgt.2017.08.003
[2] 林学民, 杜小勇, 李翠平. 基于图结构的大数据分析与管理技术专刊前言[J]. 软件学报, 2018, 29(3): 525-527.
[2] (Lin Xuemin, Du Xiaoyong, Li Cuiping.Preface to Special Issue of Big Data Analysis and Management Technology Based on Graph Structure[J]. Journal of Software, 2018, 29(3): 525-527.)
[3] Zafarani R, Abbasi M A, Liu H.Social Media Mining: An Introduction[M]. New York: Cambridge University Press, 2014.
[4] Wang P, Xu B W, Wu Y R, et al.Link Prediction in Social Networks: The State-of-the-Art[J]. Science China: Information Sciences, 2015, 58(1): 1-38.
[5] Enugala R, Rajamani L, Kurapati S, et al.Detecting Communities in Dynamic Social Networks Using Modularity Ensembles SOM[J]. International Journal of Rough Sets and Data Analysis (IJRSDA), 2018, 5(1): 34-43.
doi: 10.4018/IJRSDA
[6] Huang X, Li J, Hu X.Label Informed Attributed Network Embedding[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 2017: 731-739.
[7] Dai C, Chen L, Li B, et al. Link Prediction in Multi-relational Networks Based on Relational Similarity[J]. Information Sciences, 2017, 394-395: 198-216.
doi: 10.1016/j.ins.2017.02.003
[8] Lü L, Zhou T.Link Prediction in Complex Networks: A Survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6):1150-1170.
doi: 10.1016/j.physa.2010.11.027
[9] Hasan M A, Chaoji V, Salem S, et al.Link Prediction Using Supervised Learning[C]//Proceedings of the 2006 SDM Workshop on Link Analysis, Counterterrorism and Security. 2006.
[10] Ma C, Bao Z K, Zhang H F.Improving Link Prediction in Complex Networks by Adaptively Exploiting Multiple Structural Features of Networks[OL]. arXiv Preprint, arXiv: 1608.04533.
[11] Tang J, Lou T, Kleinberg J, et al. Transfer Learning to Infer Social Ties Across Heterogeneous Networks[J].ACM Transactions on Information Systems (TOIS), 2016, 34(2): Article No.7.
[12] Scellato S, Noulas A, Mascolo C.Exploiting Place Features in Link Prediction on Location-based Social Networks[C]//Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2011: 1046-1054.
[13] Boccaletti S, Bianconi G, Criado R, et al.The Structure and Dynamics of Multilayer Networks[J]. Physics Reports, 2014, 544(1): 1-122.
doi: 10.1016/j.physrep.2014.07.001
[14] Hristova D, Noulas A, Brown C, et al.A Multilayer Approach to Multiplexity and Link Prediction in Online Geo-social Networks[J]. EPJ Data Science, 2016, 5:24.
doi: 10.1140/epjds/s13688-016-0087-z
[15] Yang Y, Chawla N, Sun Y, et al.Predicting Links in Multi-relational and Heterogeneous Networks[C]// Proceedings of the 12th International Conference on Data Mining. 2012.
[16] Sun Y, Barber R, Gupta M, et al.Co-author Relationship Prediction in Heterogeneous Bibliographic Networks[C]// Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining. 2011.
[17] Pan S J, Yang Q.A Survey on Transfer Learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
doi: 10.1109/TKDE.2009.191
[18] Pan S J, Tsang I W, Kwok J T, et al.Domain Adaptation via Transfer Component Analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
doi: 10.1109/TNN.2010.2091281
[19] Borgwardt K M, Gretton A, Rasch M J, et al.Integrating Structured Biological Data by Kernel Maximum Mean Discrepancy[J]. Bioinformatics, 2006, 22(14): 49-57.
doi: 10.1093/bioinformatics/btl242
[20] Narasimhan J, Holder L.Feature Engineering for Supervised Link Prediction on Dynamic Social Networks[OL]. arXiv Preprint, arXiv: 1410.1783.
[21] Lü L, Chen D, Ren X L, et al.Vital Nodes Identification in Complex Networks[J]. Physics Reports, 2016, 650: 1-63.
doi: 10.1016/j.physrep.2016.06.007
[22] Kleinberg J M.Authoritative Sources in a Hyperlinked Environment[J]. Journal of the ACM, 1999, 46(5): 604-632.
doi: 10.1145/324133.324140
[23] Page L. The PageRank Citation Ranking: Bringing Order to the Web[R/OL]. Stanford InfoLab. .
[24] Maćkiewicz A, Ratajczak W.Principal Components Analysis[J]. Computers & Geosciences, 1993, 19(3): 303-342.
[25] Berlingerio M, Coscia M, Giannotti F, et al.Foundations of Multidimensional Network Analysis[C]//Proceedings of the 2011 International Conference on Advances in Social Networks Analysis and Mining. IEEE, 2011:485-489.
[26] 伍杰华. 基于RReliefF特征选择算法的复杂网络链接分类[J]. 计算机工程, 2017, 43(8):208-214.
[26] (Wu Jiehua.Complex Network Link Classification Based on RReliefF Feature Selection Algorithm[J]. Computer Engineering, 2017, 43(8): 208-214.)
[1] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[2] Liu Tong,Ni Weijian,Sun Yujian,Zeng Qingtian. Predicting Remaining Business Time with Deep Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 134-142.
[3] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[4] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[5] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[6] Liqing Qiu,Wei Jia,Xin Fan. Influence Maximization Algorithm Based on Overlapping Community[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[7] Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of ScienceNet.cn
[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[8] Meishan Chen,Chenxi Xia. Identifying Entities of Online Questions from Cancer Patients Based on Transfer Learning[J]. 数据分析与知识发现, 2019, 3(12): 61-69.
[9] Xinrui Wang,Yue He. Predicting Stock Market Fluctuations with Social Media Behaviors: Case Study of Sina Finance Blog[J]. 数据分析与知识发现, 2019, 3(11): 108-119.
[10] Ye Guanghui,Hu Jinglan,Xu Jian,Xia Lixin. Analyzing Growth Trends and Attachment Mode of Social Blog Tags[J]. 数据分析与知识发现, 2018, 2(6): 70-78.
[11] Guo Bo,Zhao Junrui,Sun Yu. Analyzing Characteristics and Dynamics of User Behaviors in Social Q&A Community: Case Study of Zhihu.com[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[12] Chen Yuan,Wang Chaoqun,Hu Zhongyi,Wu Jiang. Identifying Malicious Websites with PCA and Random Forest Methods[J]. 数据分析与知识发现, 2018, 2(4): 71-80.
[13] Wang Feifei,Zhang Shengtai. Analyzing Information Behaviors of Mobile Social Network Users[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[14] Zhang Ling,Luo Manman,Zhu Lijun. Analyzing Information Dissemination on Social Networks[J]. 数据分析与知识发现, 2018, 2(2): 46-57.
[15] Chen Fen,Fu Xi,He Yuan,Xue Chunxiang. Identifying Weibo Opinion Leaders with Social Network Analysis and Influence Diffusion Model[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn