Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (12): 12-22    DOI: 10.11925/infotech.2096-3467.2018.0393
Current Issue | Archive | Adv Search |
Identifying Useful Information from Open Innovation Community
Li He, Zhu Linlin(), Yan Min, Liu Jincheng, Hong Chuang
School of Management, Jilin University, Changchun 130022, China
Download: PDF (900 KB)   HTML ( 15
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper aims to identify useful message from open innovation community with numerous redundant and low quality information. [Methods] First, we retrieved 23,137 users’ comments on programming bugs from the official Xiaomi MIUI Forum based on the information adoption model. Then, we applied binary logistic regression method to explore factors affecting the usefulness of these comments. [Results] The timeliness of information had positive impact on their usefulness, the integrity of information also affected their usefulness, and the semantics of information had negative effects on their usefulness. The users’ previous experience did not influence the usefulness of information. However, users’ previous contribution had positive effects on the usefulness of information. [Limitations] The research data was collected from small portion of one community, which might yield biased results. [Conclusions] This paper could help us effectively identify usefulness information from open innovation communities.

Key wordsOpen Innovation Community      Information Adoption Model      LDA Topic Model     
Received: 08 April 2018      Published: 16 January 2019
ZTFLH:  G203  

Cite this article:

Li He,Zhu Linlin,Yan Min,Liu Jincheng,Hong Chuang. Identifying Useful Information from Open Innovation Community. Data Analysis and Knowledge Discovery, 2018, 2(12): 12-22.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.0393     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I12/12

符号 说明
α 文档-主题分布超参数
β 主题-词语分布超参数
θ 文档-主题概率分布
φ 主题-词语概率分布
z 词语的主题分配
w 词语
M 文档数
N 词语数(无重复)
K 主题数
变量类型 变量名 量化方法 测度类型
自变量 信息及时性(X1) 提交时间与抓取时间差 比率变量
信息完整性(X2) 根据Bug截图、Log文件、复现步骤有无, 取值为0,1,2,3 顺序变量
信息语义性(X3) 信息所属主题的全部支持文档数 比率变量
用户先前经验(X4) MIUI社区中每个用户的经验值 比率变量
用户主动贡献程度(X5) MIUI社区中每个用户的主题值 比率变量
因变量 信息有用性(Y) 已收录状态为1, 其他为0 名义变量
主题 支持文档数 词语
16 512 耗电 太快 用电 排行 不敢 好点 玩玩 更快 极度 优化
14 360 闪退 就会 阴阳师 退后 没事 终结者 填充 成语 蓝光 多久
2 335 手势 全面 返回 全屏 闪屏 桌面 底部 触发 操作 灵敏度
10 309 小时 没电 充满 耗电 两个 满电 半个 玩游戏 三个 不到
68 307 相册 图片 照片 分享 私密 发送 相片 缩略图 美化 图库
179 307 音乐 播放 网易 歌曲 暂停 播放器 歌词 酷狗 听歌 一首
42 293 运行 停止 屡次 错误报告 信条 看书 星火 用个 还好 适用
1 292 论坛 miui 分屏 帖子 新版 板块 哔哩 解答 发帖 版块
121 264 解锁 指纹 人脸 指纹识别 录入 屏后 解开 录取 手指 平面 指纹锁
104 263 公交 nfc 充值 刷卡 地铁 一卡通 成功 余额 开通 重庆
100 259 耗电 很快 超级 快如闪电 非常 越来越快 特快 巨快 闪电 虚电
131 255 视频 播放 观看 爱奇艺 本地 优酷 腾讯 播放器 暂停 视频卡
15 250 流量 校正 套餐 剩余 校准 监控 查询 统计 矫正 联通
119 238 电话 打电话 接电话 挂断 接听 拨打 接通 免提 接听电话 进来
5 237 录制 声音 屏幕 系统 录屏 麦克风 扬声器 选项 白点 内录
36 234 桌面 动画 回到 返回 退回 过渡 主页 效果 闪动 过度
71 230 开机 关机 自动关机 定时 电源 开关机 自动开机 按住 百分之五十 定时开关
41 223 状态栏 颜色 白色 背景 黑色 看不见 变成 看不清 白条 变色
124 221 死机 重启 经常 频繁 卡机 强制 卡主 关键 改写 同样
23 219 后台 程序 锁定 运行 进程 圆角 自启 上锁 限制 后台任务
及时性X1 完整性X2 语义性X3 经验X4 主动贡献X5 信息有用性Y
均值 24.21 1.27 165.27 2 489.60 34.53 0.17
标准差 11.83 0.57 93.68 6 120.40 102.57 0.38
极小值 0 0 16 -56.00 1 0
极大值 45 3 512 182 092.00 2 958 1
及时性
X1
完整性X2 语义性
X3
经验
X4
主动贡献X5
及时性X1 1 -0.043 -0.021 0.024 0.026
完整性X2 -0.043 1 -0.048 0.097 0.094
语义性X3 -0.021 -0.048 1 -0.012 -0.020
经验X4 0.024 0.097 -0.012 1 0.677
主动贡献X5 0.026 0.094 -0.020 0.677 1
χ2 Sig.
步骤 70.906 0.000
70.906 0.000
模型 70.906 0.000
χ2 Sig.
14.148 0.078
B Sig. Exp(B)
及时性X1 0.006 0.000 1.006
完整性X2 / 0.011
完整性X2(1) 0.724 0.008 2.062
完整性X2(2) 0.703 0.008 2.019
完整性X2(3) 0.622 0.020 1.862
语义性X3 -0.001 0.000 0.999
经验X4 0.000 0.215 1.000
主动贡献X5 0.001 0.002 1.001
类别 假设 结果
信息质量 H1: 信息及时性影响开放式创新社区信息有用性 支持
H2: 信息完整性影响开放式创新社区信息有用性 支持
H3: 信息语义性影响开放式创新社区信息有用性 支持
信息源
可信性
H4: 用户先前经验影响开放式创新社区信息有用性 不支持
H5: 用户主动贡献程度影响开放式创新社区信息有用性 支持
[1] 清科研究中心. 2016年中国大企业开放式创新发展研究报告[EB/OL]. (2017-01-12). [2018-03-20]. .
[1] (Zero2IPO Research. Research Report on Open Innovation and Development of Chinese Large Enterprises in 2016[EB/OL]. (2017-01-12). [2018-04-03].
[2] Chesbrough H W.Open Innovation: The New Imperative for Creating and Profiting from Technology[M]. Boston: Harvard Business School Press, 2003.
[3] Bullinger A C, Möslein K.Innovation Contests—Where are We?[C]// Proceedings of the 16th Americas Conference on Information Systems. 2010.
[4] 詹湘东. 基于用户创新社区的开放式创新研究[J].中国科技论坛, 2013(8): 34-39.
doi: 10.3969/j.issn.1002-6711.2013.08.007
[4] (Zhan Xiangdong.The Research on Open Innovation Based on User Innovation Community[J]. Forum on Science and Technology, 2013(8): 34-39.)
doi: 10.3969/j.issn.1002-6711.2013.08.007
[5] 原欣伟, 杨少华. 在线用户创新社区的知识创造——研究综述与理论分析框架[J]. 情报科学, 2017, 35(7): 162-168.
doi: 10.13833/j.cnki.is.2017.07.028
[5] (Yuan Xinwei, Yang Shaohua.Knowledge Creation of Online User Innovation Communities: A Research Review and Theoretical Analysis Framework[J]. Information Science, 2017, 35(7): 162-168.)
doi: 10.13833/j.cnki.is.2017.07.028
[6] Martinez-Torres R, Olmedilla M.Identification of Innovation Solvers in Open Innovation Communities Using Swarm Intelligence[J]. Technological Forecasting & Social Change, 2016, 109: 15-24.
doi: 10.1016/j.techfore.2016.05.007
[7] 廖晓, 李志宏, 席运江. 基于聚类的用户创新社区知识网络建模及分析[J]. 计算机仿真, 2016, 33(4): 316-319, 351.
[7] (Liao Xiao, Li Zhihong, Xi Yunjiang.Modeling and Analysis of Users’ Knowledge Network in Innovative Community Based on Clustering[J]. Computer Simulation, 2016, 33(4): 316-319, 351.)
[8] 戚桂杰, 李奕莹. 企业开放式创新社区在线用户贡献度研究[J]. 科技进步与对策, 2016, 33(14): 81-87.
doi: 10.6049/kjjbydc.2016010256
[8] (Qi Guijie, Li Yiying.Research on the Contribution Degrees of Online Users in the Open Innovation Communities for Enterprises[J]. Science & Technology Progress and Policy, 2016, 33(14): 81-87.)
doi: 10.6049/kjjbydc.2016010256
[9] Gangi P M D, Wasko M M, Hooker R E. Getting Customers’ Ideas to Work for You: Learning from Dell How to Succeed with Online User Innovation Communities[J]. MIS Quarterly Executive, 2010, 9(4): 213-228.
[10] 李奕莹, 戚桂杰. 创新价值链视角下企业开放式创新社区管理的系统动力学研究[J]. 商业经济与管理, 2017(6): 60-70.
doi: 10.14134/j.cnki.cn33-1336/f.2017.06.006
[10] (Li Yiying, Qi Guijie.System Dynamic Analysis on Managing the Open Innovation Communities for Enterprises from the View of Innovation Value Chain[J]. Journal of Business Economics, 2017(6): 60-70.)
doi: 10.14134/j.cnki.cn33-1336/f.2017.06.006
[11] Petty R E, Cacioppo J T.Communication and Persuasion: Central and Peripheral Routes to Attitude Change[A]// Schlüsselwerke der Medienwirkungsforschung[M]. Springer VS, Wiesbaden, 2016.
[12] Sussman S W, Siegal W S.Informational Influence in Organizations: An Integrated Approach to Knowledge Adoption[J]. Information Systems Research, 2003, 14(1): 47-65.
doi: 10.1287/isre.14.1.47.14767
[13] Shu M Y, Scott N.Influence of Social Media on Chinese Students’ Choice of an Overseas Study Destination: An Information Adoption Model Perspective[J]. Journal of Travel & Tourism Marketing, 2014, 31(2): 286-302.
doi: 10.1080/10548408.2014.873318
[14] Erkan I, Evans C.The Influence of eWOM in Social Media on Consumers’ Purchase Intentions: An Extended Approach to Information Adoption[J]. Computers in Human Behavior, 2016, 61: 47-55.
doi: 10.1016/j.chb.2016.03.003
[15] Cheung C M K, Lee M K O, Rabjohn N. The Impact of Electronic Word-of-Mouth[J]. Internet Research, 2008, 18(3): 229-247.
doi: 10.1108/10662240810883290
[16] Salehi-Esfahani S, Ravichandran S, Israeli A, et al.Investigating Information Adoption Tendencies Based on Restaurants’ User-Generated Content Utilizing a Modified Information Adoption Model[J]. Journal of Hospitality Marketing & Management, 2016, 25(8): 925-953.
doi: 10.1080/19368623.2016.1171190
[17] Wixom B H, Todd P A.A Theoretical Integration of User Satisfaction and Technology Acceptance[J]. Information Systems Research, 2005, 16(1): 85-102.
doi: 10.1287/isre.1050.0042
[18] Wang R Y, Strong D M.Beyond Accuracy: What Data Quality Means to Data Consumers[J]. Journal of Management Information System, 1996, 12(4): 5-33.
doi: 10.1080/07421222.1996.11518099
[19] Wang R Y, Reddy M P, Kon H B.Toward Quality Data: An Attribute-based Approach[J]. Decision Support System,1995, 13(3-4): 349-372.
doi: 10.1016/0167-9236(93)E0050-N
[20] Xiang Z, Du Q, Ma Y, et al.A Comparative Analysis of Major Online Review Platforms: Implications for Social Media Analytics in Hospitality and Tourism[J]. Tourism Management, 2017, 58: 51-65.
doi: 10.1016/j.tourman.2016.10.001
[21] 吴江, 刘弯弯. 什么样的评论更容易获得有用性投票——以亚马逊网站研究为例[J]. 数据分析与知识发现, 2017, 1(9): 16-26.
[21] (Wu Jiang, Liu Wanwan.Identifying Reviews with More Positive Votes——Case Study of Amazon.cn[J]. Data Analysis and Knowledge Discovery, 2017, 1(9): 16-26.)
[22] Lohan G, Conboy K, Lang M.Examining Customer Focus in IT Project Management: Findings from Irish and Norwegian Case Studies[J]. Scandinavian Journal of Information Systems, 2011, 23(2): 29-58.
[23] Gretzel U, Yoo K H, Purifoy M.Online Travel Review Study: Role&Impact of Online Travel Reviews[R]. Texas A&M University: Laboratory for Intelligent Systems in Tourism, 2007.
[24] Mcauley J J, Leskovec J.From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise Through Online Reviews[C]// Proceedings of the 22nd International Conference on World Wide Web, 2013.
[25] 原欣伟, 杨少华, 王超超, 等. 基于用户特征抽取和随机森林分类的用户创新社区领先用户识别研究[J].数据分析与知识发现, 2017, 1(11): 62-74.
[25] (Yuan Xinwei, Yang Shaohua, Wang Chaochao, et al.Identifying Lead Players of User Innovation Communities Based on Feature Extraction and Random Forest Classification[J]. Data Analysis and Knowledge Discovery, 2017, 1(11): 62-74.)
[26] Von Hippel E.Lead Users: A Source of Novel Product Concepts[J]. Management Science, 1986, 32(7): 791-805.
doi: 10.1287/mnsc.32.7.791
[27] Mahr D, Lievens A.Virtual Lead User Communities: Drivers of Knowledge Creation for Innovation[J]. Research Policy, 2012, 41(1): 167-177.
doi: 10.1016/j.respol.2011.08.006
[28] 方小飞, 黄孝喜, 王荣波, 等. 基于LDA模型的移动投诉文本热点话题识别[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[28] (Fang Xiaofei, Huang Xiaoxi, Wang Rongbo, et al.Identifying Hot Topics from Mobile Complaint Texts[J]. Data Analysis and Knowledge Discovery, 2017, 1(2):19-27.)
[29] Blei D M, Lafferty J D.Dynamic Topic Models[C]// Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, USA. 2006:113-120.
[30] 唐晓波, 向坤. 基于LDA模型和微博热度的热点挖掘[J]. 图书情报工作, 2014, 58(5): 58-63.
doi: 10.13266/j.issn.0252-3116.2014.05.010
[30] (Tang Xiaobo, Xiang Kun.Hotspot Mining Based on LDA Model and Microblog Heat[J]. Library and Information Service, 2014, 58(5): 58-63.)
doi: 10.13266/j.issn.0252-3116.2014.05.010
[31] 金碧漪, 许鑫. 网络健康社区中的主题特征研究[J]. 图书情报工作, 2015, 59(12): 100-105.
doi: 10.13266/j.issn.0252-3116.2015.012.015
[31] (Jin Biyi, Xu Xin.Research on Theme Features in Online Health Community[J]. Library and Information Service, 2015, 59(12): 100-105.)
doi: 10.13266/j.issn.0252-3116.2015.012.015
[32] 徐佳俊, 杨飏, 姚天昉, 等. 基于LDA模型的论坛热点话题识别和追踪[J]. 中文信息学报, 2016, 30(1): 43-49.
[32] (Xu Jiajun, Yang Yang, Yao Tianfang, et al.LDA Based Hot Topic Detection and Tracking for the Forum[J]. Journal of Chinese Information Processing, 2016, 30(1): 43-49.)
[33] 李永忠, 蔡佳. 基于LDA的国内电子政务研究主题演化及可视化分析[J]. 现代情报, 2017, 37(4): 158-164.
doi: 10.3969/j.issn.1008-0821.2017.04.025
[33] (Li Yongzhong, Cai Jia.Theme Evolvement and Visual Analysis of Domestic E-government Research Based on LDA[J]. Journal of Modern Information, 2017, 37(4): 158-164.)
doi: 10.3969/j.issn.1008-0821.2017.04.025
[34] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[35] 王伟, 周咏梅, 阳爱民, 等. 一种基于LDA主题模型的评论文本情感分类方法[J]. 数据采集与处理, 2017, 32(3): 629-635.
doi: 10.16337/j.1004-9037.2017.03.023
[35] (Wang Wei, Zhou Yongmei, Yang Aimin, et al.Method of Sentiment Analysis for Comment Texts Based on LDA[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 629-635.)
doi: 10.16337/j.1004-9037.2017.03.023
[36] Wei X, Croft W B.LDA-based Document Models for Ad-Hoc Retrieval[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 178-185.
[37] Cao J, Xia T, Li J, et al.A Density-based Method for Adaptive LDA Model Selection[J]. Neurocomputing, 2009, 72(7-9): 1775-1781.
doi: 10.1016/j.neucom.2008.06.011
[38] 张文彤, 董伟. SPSS统计分析高级教程[M]. 北京: 高等教育出版社, 2002: 91-108.
[38] (Zhang Wentong, Dong Wei.SPSS Advanced Statistical Analysis Course[M]. Beijing: Higher Education Press, 2002: 91-108.)
[1] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[2] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[3] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[4] Qu Jiabin,Ou Shiyan. Analyzing Topic Evolution with Topic Filtering and Relevance[J]. 数据分析与知识发现, 2018, 2(1): 64-75.
[5] Guan Peng,Wang Yuefen. Identifying Optimal Topic Numbers from Sci-Tech Information with LDA Model[J]. 现代图书情报技术, 2016, 32(9): 42-50.
[6] Zhuo Keqiu, Yu Wei, Su Xinning. Parallel Implementing Bursty Events Detection Using MapReduce[J]. 现代图书情报技术, 2015, 31(2): 46-54.
[7] Hu Jiming, Chen Guo. Study on Improvement of Text Classification Using HS-SVM[J]. 现代图书情报技术, 2014, 30(9): 74-80.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn