Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (12): 12-22    DOI: 10.11925/infotech.2096-3467.2018.0393
Current Issue | Archive | Adv Search |
Identifying Useful Information from Open Innovation Community
He Li,Linlin Zhu(),Min Yan,Jincheng Liu,Chuang Hong
School of Management, Jilin University, Changchun 130022, China
Download: PDF(900 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] The paper aims to identify useful message from open innovation community with numerous redundant and low quality information. [Methods] First, we retrieved 23,137 users’ comments on programming bugs from the official Xiaomi MIUI Forum based on the information adoption model. Then, we applied binary logistic regression method to explore factors affecting the usefulness of these comments. [Results] The timeliness of information had positive impact on their usefulness, the integrity of information also affected their usefulness, and the semantics of information had negative effects on their usefulness. The users’ previous experience did not influence the usefulness of information. However, users’ previous contribution had positive effects on the usefulness of information. [Limitations] The research data was collected from small portion of one community, which might yield biased results. [Conclusions] This paper could help us effectively identify usefulness information from open innovation communities.

Key wordsOpen Innovation Community      Information Adoption Model      LDA Topic Model     
Received: 08 April 2018      Published: 16 January 2019

Cite this article:

He Li,Linlin Zhu,Min Yan,Jincheng Liu,Chuang Hong. Identifying Useful Information from Open Innovation Community. Data Analysis and Knowledge Discovery, 2018, 2(12): 12-22.

URL:     OR

[1] 清科研究中心. 2016年中国大企业开放式创新发展研究报告[EB/OL]. (2017-01-12). [2018-03-20]. .
[1] (Zero2IPO Research. Research Report on Open Innovation and Development of Chinese Large Enterprises in 2016[EB/OL]. (2017-01-12). [2018-04-03].
[2] Chesbrough H W.Open Innovation: The New Imperative for Creating and Profiting from Technology[M]. Boston: Harvard Business School Press, 2003.
[3] Bullinger A C, Möslein K.Innovation Contests—Where are We?[C]// Proceedings of the 16th Americas Conference on Information Systems. 2010.
[4] 詹湘东. 基于用户创新社区的开放式创新研究[J].中国科技论坛, 2013(8): 34-39.
[4] (Zhan Xiangdong.The Research on Open Innovation Based on User Innovation Community[J]. Forum on Science and Technology, 2013(8): 34-39.)
[5] 原欣伟, 杨少华. 在线用户创新社区的知识创造——研究综述与理论分析框架[J]. 情报科学, 2017, 35(7): 162-168.
[5] (Yuan Xinwei, Yang Shaohua.Knowledge Creation of Online User Innovation Communities: A Research Review and Theoretical Analysis Framework[J]. Information Science, 2017, 35(7): 162-168.)
[6] Martinez-Torres R, Olmedilla M.Identification of Innovation Solvers in Open Innovation Communities Using Swarm Intelligence[J]. Technological Forecasting & Social Change, 2016, 109: 15-24.
[7] 廖晓, 李志宏, 席运江. 基于聚类的用户创新社区知识网络建模及分析[J]. 计算机仿真, 2016, 33(4): 316-319, 351.
[7] (Liao Xiao, Li Zhihong, Xi Yunjiang.Modeling and Analysis of Users’ Knowledge Network in Innovative Community Based on Clustering[J]. Computer Simulation, 2016, 33(4): 316-319, 351.)
[8] 戚桂杰, 李奕莹. 企业开放式创新社区在线用户贡献度研究[J]. 科技进步与对策, 2016, 33(14): 81-87.
[8] (Qi Guijie, Li Yiying.Research on the Contribution Degrees of Online Users in the Open Innovation Communities for Enterprises[J]. Science & Technology Progress and Policy, 2016, 33(14): 81-87.)
[9] Gangi P M D, Wasko M M, Hooker R E. Getting Customers’ Ideas to Work for You: Learning from Dell How to Succeed with Online User Innovation Communities[J]. MIS Quarterly Executive, 2010, 9(4): 213-228.
[10] 李奕莹, 戚桂杰. 创新价值链视角下企业开放式创新社区管理的系统动力学研究[J]. 商业经济与管理, 2017(6): 60-70.
[10] (Li Yiying, Qi Guijie.System Dynamic Analysis on Managing the Open Innovation Communities for Enterprises from the View of Innovation Value Chain[J]. Journal of Business Economics, 2017(6): 60-70.)
[11] Petty R E, Cacioppo J T.Communication and Persuasion: Central and Peripheral Routes to Attitude Change[A]// Schlüsselwerke der Medienwirkungsforschung[M]. Springer VS, Wiesbaden, 2016.
[12] Sussman S W, Siegal W S.Informational Influence in Organizations: An Integrated Approach to Knowledge Adoption[J]. Information Systems Research, 2003, 14(1): 47-65.
[13] Shu M Y, Scott N.Influence of Social Media on Chinese Students’ Choice of an Overseas Study Destination: An Information Adoption Model Perspective[J]. Journal of Travel & Tourism Marketing, 2014, 31(2): 286-302.
[14] Erkan I, Evans C.The Influence of eWOM in Social Media on Consumers’ Purchase Intentions: An Extended Approach to Information Adoption[J]. Computers in Human Behavior, 2016, 61: 47-55.
[15] Cheung C M K, Lee M K O, Rabjohn N. The Impact of Electronic Word-of-Mouth[J]. Internet Research, 2008, 18(3): 229-247.
[16] Salehi-Esfahani S, Ravichandran S, Israeli A, et al.Investigating Information Adoption Tendencies Based on Restaurants’ User-Generated Content Utilizing a Modified Information Adoption Model[J]. Journal of Hospitality Marketing & Management, 2016, 25(8): 925-953.
[17] Wixom B H, Todd P A.A Theoretical Integration of User Satisfaction and Technology Acceptance[J]. Information Systems Research, 2005, 16(1): 85-102.
[18] Wang R Y, Strong D M.Beyond Accuracy: What Data Quality Means to Data Consumers[J]. Journal of Management Information System, 1996, 12(4): 5-33.
[19] Wang R Y, Reddy M P, Kon H B.Toward Quality Data: An Attribute-based Approach[J]. Decision Support System,1995, 13(3-4): 349-372.
[20] Xiang Z, Du Q, Ma Y, et al.A Comparative Analysis of Major Online Review Platforms: Implications for Social Media Analytics in Hospitality and Tourism[J]. Tourism Management, 2017, 58: 51-65.
[21] 吴江, 刘弯弯. 什么样的评论更容易获得有用性投票——以亚马逊网站研究为例[J]. 数据分析与知识发现, 2017, 1(9): 16-26.
[21] (Wu Jiang, Liu Wanwan.Identifying Reviews with More Positive Votes——Case Study of[J]. Data Analysis and Knowledge Discovery, 2017, 1(9): 16-26.)
[22] Lohan G, Conboy K, Lang M.Examining Customer Focus in IT Project Management: Findings from Irish and Norwegian Case Studies[J]. Scandinavian Journal of Information Systems, 2011, 23(2): 29-58.
[23] Gretzel U, Yoo K H, Purifoy M.Online Travel Review Study: Role&Impact of Online Travel Reviews[R]. Texas A&M University: Laboratory for Intelligent Systems in Tourism, 2007.
[24] Mcauley J J, Leskovec J.From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise Through Online Reviews[C]// Proceedings of the 22nd International Conference on World Wide Web, 2013.
[25] 原欣伟, 杨少华, 王超超, 等. 基于用户特征抽取和随机森林分类的用户创新社区领先用户识别研究[J].数据分析与知识发现, 2017, 1(11): 62-74.
[25] (Yuan Xinwei, Yang Shaohua, Wang Chaochao, et al.Identifying Lead Players of User Innovation Communities Based on Feature Extraction and Random Forest Classification[J]. Data Analysis and Knowledge Discovery, 2017, 1(11): 62-74.)
[26] Von Hippel E.Lead Users: A Source of Novel Product Concepts[J]. Management Science, 1986, 32(7): 791-805.
[27] Mahr D, Lievens A.Virtual Lead User Communities: Drivers of Knowledge Creation for Innovation[J]. Research Policy, 2012, 41(1): 167-177.
[28] 方小飞, 黄孝喜, 王荣波, 等. 基于LDA模型的移动投诉文本热点话题识别[J]. 数据分析与知识发现, 2017, 1(2): 19-27.
[28] (Fang Xiaofei, Huang Xiaoxi, Wang Rongbo, et al.Identifying Hot Topics from Mobile Complaint Texts[J]. Data Analysis and Knowledge Discovery, 2017, 1(2):19-27.)
[29] Blei D M, Lafferty J D.Dynamic Topic Models[C]// Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, USA. 2006:113-120.
[30] 唐晓波, 向坤. 基于LDA模型和微博热度的热点挖掘[J]. 图书情报工作, 2014, 58(5): 58-63.
[30] (Tang Xiaobo, Xiang Kun.Hotspot Mining Based on LDA Model and Microblog Heat[J]. Library and Information Service, 2014, 58(5): 58-63.)
[31] 金碧漪, 许鑫. 网络健康社区中的主题特征研究[J]. 图书情报工作, 2015, 59(12): 100-105.
[31] (Jin Biyi, Xu Xin.Research on Theme Features in Online Health Community[J]. Library and Information Service, 2015, 59(12): 100-105.)
[32] 徐佳俊, 杨飏, 姚天昉, 等. 基于LDA模型的论坛热点话题识别和追踪[J]. 中文信息学报, 2016, 30(1): 43-49.
[32] (Xu Jiajun, Yang Yang, Yao Tianfang, et al.LDA Based Hot Topic Detection and Tracking for the Forum[J]. Journal of Chinese Information Processing, 2016, 30(1): 43-49.)
[33] 李永忠, 蔡佳. 基于LDA的国内电子政务研究主题演化及可视化分析[J]. 现代情报, 2017, 37(4): 158-164.
[33] (Li Yongzhong, Cai Jia.Theme Evolvement and Visual Analysis of Domestic E-government Research Based on LDA[J]. Journal of Modern Information, 2017, 37(4): 158-164.)
[34] Blei D M, Ng A Y, Jordan M I.Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[35] 王伟, 周咏梅, 阳爱民, 等. 一种基于LDA主题模型的评论文本情感分类方法[J]. 数据采集与处理, 2017, 32(3): 629-635.
[35] (Wang Wei, Zhou Yongmei, Yang Aimin, et al.Method of Sentiment Analysis for Comment Texts Based on LDA[J]. Journal of Data Acquisition and Processing, 2017, 32(3): 629-635.)
[36] Wei X, Croft W B.LDA-based Document Models for Ad-Hoc Retrieval[C]// Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 178-185.
[37] Cao J, Xia T, Li J, et al.A Density-based Method for Adaptive LDA Model Selection[J]. Neurocomputing, 2009, 72(7-9): 1775-1781.
[38] 张文彤, 董伟. SPSS统计分析高级教程[M]. 北京: 高等教育出版社, 2002: 91-108.
[38] (Zhang Wentong, Dong Wei.SPSS Advanced Statistical Analysis Course[M]. Beijing: Higher Education Press, 2002: 91-108.)
[1] Linna Xi,Yongxiang Dou. Examining Reposts of Micro-bloggers with Planned Behavior Theory[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[2] Jie Zhang,Junbo Zhao,Dongsheng Zhai,Ningning Sun. Patent Technology Analysis of Microalgae Biofuel Industrial Chain Based on Topic Model[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[3] Junwan Liu,Zhixin Long,Feifei Wang. Finding Collaboration Opportunities from Emerging Issues with LDA Topic Model and Link Prediction[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[4] Jiabin Qu,Shiyan Ou. Analyzing Topic Evolution with Topic Filtering and Relevance[J]. 数据分析与知识发现, 2018, 2(1): 64-75.
[5] Guan Peng,Wang Yuefen. Identifying Optimal Topic Numbers from Sci-Tech Information with LDA Model[J]. 现代图书情报技术, 2016, 32(9): 42-50.
[6] Zhuo Keqiu, Yu Wei, Su Xinning. Parallel Implementing Bursty Events Detection Using MapReduce[J]. 现代图书情报技术, 2015, 31(2): 46-54.
[7] Hu Jiming, Chen Guo. Study on Improvement of Text Classification Using HS-SVM[J]. 现代图书情报技术, 2014, 30(9): 74-80.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938