Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (12): 98-108    DOI: 10.11925/infotech.2096-3467.2018.0545
Current Issue | Archive | Adv Search |
Predicting Antineoplastic Drug Targets Based on Network Properties
Xinyue Fan,Lei Cui()
School of Medical Informatics, China Medical University, Shenyang 110122, China
Download: PDF(2408 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to identify potential targets of antineoplastic drugs, aiming to provide references for future clinical work and experiment. [Methods] First, we retrieved the targets of antineoplastic drugs from the DrugBank database, which were also combined with the protein interaction information from the HPRD database. Then, we established the PPI network for these targets with Cytoscape and calculated the topology properties of the nodes. Third, we used SPSS single factor analysis and Weka’s information gain principle to choose the variables for topological attributes. Fourth, we introduced the SMOTE algorithm to process unbalanced data sets and constructed the prediction model for antineoplastic drug targets with the decision tree method. Finally, we compared the performance of our new model with those of the classic ones. [Results] The precision of the proposed model reached 73.18%. With the help of CBioPortal, we found 16 targets’ prediction scores higher than 0.9. These targets could mutate and amplify in various tumors, which were analyzed with the case of NR5A1. [Limitations] The characteristics of target functions, sequence attributes, and other factors should also be included to construct the model. [Conclusions] The proposed model could predict the potential targets of antineoplastic drugs effectively.

Key wordsPPI Network      Machine Learning      Decision Tree      Antineoplastic Drug Targets Prediction     
Received: 15 May 2018      Published: 16 January 2019

Cite this article:

Xinyue Fan,Lei Cui. Predicting Antineoplastic Drug Targets Based on Network Properties. Data Analysis and Knowledge Discovery, 2018, 2(12): 98-108.

URL:     OR

[1] Allemani C, Matsuda T, Di Carlo V, et al.Global Surveillance of Trends in Cancer Survival 2000-14 (CONCORD-3): Analysis of Individual Records for 37513025 Patients Diagnosed with One of 18 Cancers from 322 Population-based Registries in 71 Countries[J]. The Lancet, 2018, 391(10125): 1023-1075.
[2] 陈万青, 孙可欣, 郑荣寿, 等. 2014年中国分地区恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2018, 27(1): 1-14.
[2] (Chen Wanqing, Sun Kexin, Zheng Rongshou, et al.Report of Cancer Incidence and Mortality in Different Areas of China, 2014[J]. China Cancer, 2018, 27(1): 1-14.)
[3] Futreal P A, Coin L, Marshall M, et al.A Census of Human Cancer Genes[J]. Nature Reviews Cancer, 2004, 4(3): 177-183.
[4] Strausberg R L, Simpson A J, Wooster R.Sequence-based Cancer Genomics: Progress, Lessons and Opportunities[J]. Nature Reviews Genetics, 2003, 4(6): 409-418.
[5] Ostlund G, Lindskog M, Sonnhammer E L.Network-based Identification of Novel Cancer Genes[J]. Molecular & Cellular Proteomics, 2010, 9(4): 648-655.
[6] Li L, Zhang K, Lee J, et al.Discovering Cancer Genes by Integrating Network and Functional Properties[J]. BMC Medical Genomics, 2009, 2: 61-74.
[7] 尚振伟, 李晋, 姜永帅, 等. 基于SVM的药物靶点预测方法及其应用[J]. 现代生物医学进展, 2012, 12(20): 3943-3946.
[7] (Shang Zhenwei, Li Jin, Jiang Yongshuai, et al.A Method of Drug Target Prediction Based on SVM and Its Application[J]. Progress in Modern Biomedicine, 2012, 12(20): 3943-3946.)
[8] 谢倩倩, 李订芳, 章文. 基于集成学习的离子通道药物靶点预测[J]. 计算机科学, 2015, 42(4): 177-180.
[8] (Xie Qianqian, Li Dingfang, Zhang Wen.Predicting Potential Drug Targets for Ion Channel Proteins Based on Ensemble Learning[J]. Computer Science, 2015, 42(4): 177-180.)
[9] 蔡立葛. 基于失衡数据挖掘的药物靶点预测方法研究[D]. 哈尔滨: 哈尔滨理工大学, 2017.
[9] (Cai Lige.Research on the Prediction of Drug Targets Based on Imbalance Data Mining[D]. Harbin: Harbin University of Science and Technology, 2017.)
[10] Carson M B, Lu H.Network-based Prediction and Knowledge Mining of Disease Genes[J]. BMC Medical Genomics, 2015, 8(S2): S9.
[11] Jing Y, Bian Y, Hu Z, et al.Deep Learning for Drug Design: An Artificial Intelligence Paradigm for Drug Discovery in the Big Data Era[J]. The AAPS Journal, 2018, 20(3): 58.
[12] Ferrero E, Dunham I, Sanseau P.In Silico Prediction of Novel Therapeutic Targets Using Gene-Disease Association Data[J]. Journal of Translational Medicine, 2017, 15(1): 182.
[13] Wishart D S, Knox C, Guo A C, et al.DrugBank: A Knowledgebase for Drugs, Drug Actions and Drug Targets[J]. Nucleic Acids Research, 2008, 36(Database Issue): 901-906.
[14] Keshava Prasad T S, Goel R, Kandasamy K, et al. Human Protein Reference Database[J]. Nucleic Acids Research, 2008, 37(S1): 767-772.
[15] Shannon P, Markiel A, Ozier O, et al.Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks[J]. Genome Research, 2003, 13(11): 2498-2504.
[16] Hall M, Frank E, Holmes G, et al.The WEKA Data Mining Software: An Update[J]. ACM SIGKDD Explorations Newsletter, 2009, 11(1): 10-18.
[17] Han L, Cui J, Lin H, et al.Recent Progresses in the Application of Machine Learning Approach for Predicting Protein Functional Class Independent of Sequence Similarity[J]. Proteomics, 2006, 6(14): 4023-4037.
[18] Chawla N V, Bowyer K W, Hall L O, et al.SMOTE: Synthetic Minority Over-Sampling Technique[J]. Journal of Artificial Intelligence Research, 2002, 16(1): 321-357.
[19] 杜景林, 严蔚岚. 基于距离权值的C4.5组合决策树算法[J]. 计算机工程与设计, 2018, 39(1): 96-102.
[19] (Du Jinglin, Yan Weilan.Multiple Classifiers of C4.5 Decision Tree Based on Distance Weight[J]. Computer Engineering and Design , 2018, 39(1): 96-102.)
[20] 黄秀霞, 孙力. C4.5算法的优化[J]. 计算机工程与设计, 2016, 37(5): 1265-1270.
[20] (Huang Xiuxia, Sun Li.Optimization of C4.5 Algorithm[J]. Computer Engineering and Design, 2016, 37(5): 1265-1270.)
[21] Cerami E, Gao J, Dogrusoz U, et al.The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data[J]. Cancer Discovery, 2012, 2(5): 401-404.
[22] Delaney J R, Patel C B, Willis K M, et al. Haploinsufficiency Networks Identify Targetable Patterns of Allelic Deficiency in Low Mutation Ovarian Cancer[J]. Nature Communications, 2017, 8: Article No.14423.
[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[3] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[4] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[5] Zixuan Zhang,Hao Wang,Liping Zhu,Sanhong eng. Identifying Risks of HS Codes by China Customs[J]. 数据分析与知识发现, 2019, 3(1): 72-84.
[6] Lina Liu,Jiayin Qi,Zhenping Zhang,Dan Zeng. Analyzing Impacts of Brand Reputation on Online Sales Based on Massive Commodity Reviews and Brand[J]. 数据分析与知识发现, 2018, 2(9): 10-21.
[7] Longjia Jia,Bangzuo Zhang. Classifying Topics of Internet Public Opinion from College Students: Case Study of Sina Weibo[J]. 数据分析与知识发现, 2018, 2(7): 55-62.
[8] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[9] Li Wang,Lixue Zou,Xiwen Liu. Visualizing Document Correlation Based on LDA Model[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[10] Xiufeng Cheng,Xinyi Zhang,Ning Wang. Identifying Trending Topics in Q&A Community with CART Decision Tree[J]. 数据分析与知识发现, 2018, 2(12): 52-59.
[11] Yang Zhao,Xini Yuan,Yawen Chen,Liqiang Wu. Predicting Conversion Rate of APP Advertising with Machine Learning[J]. 数据分析与知识发现, 2018, 2(11): 2-9.
[12] Xin Wang,Wen’gang Feng. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[13] Zhongyi Hu,Chaoqun Wang,Jiang Wu. Identifying Phishing Websites with Multiple Online Data Sources[J]. 数据分析与知识发现, 2017, 1(6): 47-55.
[14] Weimin Lv,Xiaomei Wang,Tao Han. Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
[15] Yue He,Min Xiao,Yue Zhang. Sentiment Analysis of Trending Topics Based on Relevance[J]. 数据分析与知识发现, 2017, 1(3): 46-53.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938