Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (10): 15-20    DOI: 10.11925/infotech.2096-3467.2018.0741
Current Issue | Archive | Adv Search |
Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks
Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian(),Shaozhong Wu,Lihua Li
School of Criminal Investigation and Counter Terrorism, People’s Public Security University of China, Beijing 100038, China
Research Center for Public Security Intelligence, People’s Public Security University of China, Beijing 100038, China
Download: PDF(860 KB)   HTML
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to predict the locations of suspects based on historical activity trajectory data, aiming to locate, track, monitor or arrest the suspects. [Methods] First, we proposed long short term memory (LSTM) and convolutional neural networks (CNN) models to predict crime locations. Then, we used the CNN model to extrct location features of key suspects and analyze their spatial correlations. Finally, we utlized the LSTM model to maintain the temporal continuity and obtain the future locations. [Results] Compared with previous models, the proposed method increased the prediction accuracy from 0.71 to 0.79 with the trajectory GeoLife dataset. [Limitations] The model was only examined with the Geolife dataset. [Conclusions] The proposed method fully exploits the spatial correlation and temporal continuity of data, which improves the effectiveness of public security intelligence analysis.

Key wordsCrime Fighting      Deep Learning      Neural Networks      Location Prediction     
Received: 09 July 2018      Published: 12 November 2018

Cite this article:

Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks. Data Analysis and Knowledge Discovery, 2018, 2(10): 15-20.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.0741     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I10/15

方法 精确度
1阶马尔可夫模型 0.48
2阶马尔可夫模型 0.51
1阶变阶马尔可夫模型 0.49
2阶变阶马尔可夫模型 0.52
LSTM模型 0.71
本文方法 0.79
Embedding层
单元个数
精确度
LSTM 本文
128 0.70 0.77
256 0.71 0.79
[1] Deloitte.Technology, Media and Telecommunications Predictions 2018[R/OL]. [2018-06-01].
[2] Rossmo D K.Place,Space,Police Investigations: Hunting Serial Violent Criminals[A]// Weisburd D, Eck J. Crime and Place[M]. Criminal Justice Press, 1995: 217-235.
[3] Ashbrook D, Starner T.Using GPS to Learn Significant Locations and Predict Movement Across Multiple Users[J]. Personal and Ubiquitous Computing, 2003, 7(5): 275-286.
doi: 10.1007/s00779-003-0240-0
[4] Alvarez-Garcia J A, Ortega J A, Gonzalez-Abril L, et al. Trip Destination Prediction Based on Past GPS Log Using a Hidden Markov Model[J]. Expert Systems with Applications, 2010, 37(12): 8166-8171.
doi: 10.1016/j.eswa.2010.05.070
[5] Asahara A, Maruyama K, Sato A, et al.Pedestrian-movement Prediction Based on Mixed Markov-chain Model[C]// Proceedings of the 2011 ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, Chicago, USA. New York, USA: ACM, 2011: 25-33.
[6] Mathew W, Raposo R, Martins B.Predicting Future Locations with Hidden Markov Models[C]// Proceedings of the 2012 ACM Conference on Ubiquitous Computing, Pittsburgh, USA. New York, USA: ACM, 2012: 911-918.
[7] Yang J, Xu J, Xu M, et al.Predicting Next Location Using a Variable Order Markov Model[C]// Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming, Dallas, USA. New York, USA: ACM, 2014: 37-42.
[8] Lecun Y, Bottou L, Bengio Y, et al.Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791
[9] Hochreiter S, Schmidhuber J.Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735
[10] Zheng Y, Xie X, Ma W, et al.GeoLife: A Collaborative Social Networking Service Among User, Location and Trajectory[J]. IEEE Data Engineering Bulletin, 2010, 33(2): 32-39.
[11] Jeung H, Liu Q, Shen H T, et al.A Hybrid Prediction Model for Moving Objects[C]// Proceedings of the 24th IEEE International Conference on Data Engineering. IEEE, 2008.
[12] 张彩平, 周丽华, 陈红梅, 等. 面向关系语境的罪犯藏匿位置预测方法[J]. 计算机科学与探索, 2015, 9(8): 945-953.
doi: 10.3778/j.issn.1673-9418.1410041
[12] (Zhang Caiping, Zhou Lihua, Chen Hongmei, et al.Relation Context Oriented Approach to Predict Hiding Location of Criminals[J]. Journal of Frontiers of Computer Science & Technology, 2015, 9(8): 945-953.)
[13] Williams R J, Zipser D.A Learning Algorithm for Continually Running Fully Recurrent Neural Networks[J]. Neural Computation, 1989, 1(2): 270-280.
doi: 10.1162/neco.1989.1.2.270
[14] Cho K, Van Merrienboer B, Gulcehre C, et al.Learning Phrase Representations Using RNN Encoder-Decoder for Statistical Machine Translation[OL]. arXiv Preprint, arXiv: 1406.1078.
[15] Graves A, Mohamed A, Hinton G E.Speech Recognition with Deep Recurrent Neural Networks[C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing. 2013: 6645-6649.
[16] Ordóñez F J, Roggen D.Deep Convolutional and LSTM Recurrent Neural Networks for Multimodal Wearable Activity Recognition[J]. Sensors, 2016, 16(1): 115.
doi: 10.3390/s16010115 pmid: 26797612
[17] 李幸超. 基于循环神经网络的轨迹位置预测技术研究[D]. 杭州: 浙江大学, 2016.
[17] (Li Xingchao.The Research of Location Prediction Based on Recurrent Neural Network[D]. Hangzhou: Zhejiang University, 2016.)
[18] Sainath T N, Vinyals O, Senior A, et al.Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks[C]// Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2015: 4580-4584.
[19] 许凡, 程华, 房一泉. 基于CLSTM的步态分类方法[J]. 华东理工大学学报: 自然科学版, 2017, 43(4): 553-558.
[19] (Xu Fan, Cheng Hua, Fang Yiquan.A Gait Pattern Classification Method Based on CLSTM[J]. Journal of East China University of Science and Technology: Natural Science Edition, 2017, 43(4): 553-558.)
[1] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[2] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[3] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[4] Wengang Feng,Jing Huang. Early Warning for Civil Aviation Security Checks Based on Deep Learning[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[5] Jiaheng Hu,Yonghua Cen,Chengyao Wu. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[6] Sanhong Deng,Yuyangzi Fu,Hao Wang. Multi-Label Classification of Chinese Books with LSTM Model[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[7] Danhao Zhu, Lei Yang, Dongbo Wang. Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model[J]. 数据分析与知识发现, 2016, 32(12): 36-43.
[8] Liyi Zhang,Chang Liu. Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction[J]. 现代图书情报技术, 2016, 32(1): 32-39.
[9] Liang Li,Zhang Yang,Huang Yaming . Rebuilding Index System for Evaluating Internet Resources by Artificial Neural Networks[J]. 现代图书情报技术, 2006, 1(5): 54-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn