Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (10): 21-26    DOI: 10.11925/infotech.2096-3467.2018.0768
Current Issue | Archive | Adv Search |
Risk Assessment of Civil Aviation Terrorism Based on K-means Clustering
Minghui Liu()
School of Criminal Investigation and Counter Terrorism, People’s Public Security University of China, Beijing 100038, China
Download: PDF(680 KB)   HTML ( 5
Export: BibTeX | EndNote (RIS)      

[Objective]This paper tries to assess the terrorism risks facing civil aviation industry quantitatively and objectively. [Methods] We proposed a risk assessment model based on K-means clustering, and then examined it with the data of terrorist attacks from 1992 to 2015. We calculated the risk of different types of attacks and their targets objectively. [Results] The risk of aircraft bombing, armed assault against the airport and airline staff were the highest, the risk of hijacking, bombing/explosion aginst the airport or airline staff were at medium level, and the risk of other attacks were relatively low. We used this method to predict the risk of terrorist attacks against the civil aviation in 2016, and the prediction accuracy was up to 92.3%. [Limitations] The proposed method for risk assessment is only suitable for processing numerical data. [Conclusions] The K-means clustering method can assess risk based on statistical data without human intervention, which could be applied to similar studies.

Key wordsK-means      Clustering      Aviation System      Risk Assessment     
Received: 15 July 2018      Published: 12 November 2018

Cite this article:

Minghui Liu. Risk Assessment of Civil Aviation Terrorism Based on K-means Clustering. Data Analysis and Knowledge Discovery, 2018, 2(10): 21-26.

URL:     OR

[1] Han J, Kamber M, Pei J.数据挖掘概念与技术[M]. 范明, 孟小峰译. 第3版. 北京: 机械工业出版社, 2012.
[1] (Han J, Kamber M, Pei J.Data Mining: Concepts and Techniques[M]. Translated by Fan Ming, Meng Xiaofeng. The 3rd Edition. Beijing: China Machine Press, 2012.)
[2] Wagstaff K, Cardie C, Rogers S.Constrained K-means Clustering with Background Knowledge[C]// Proceedings of the 18th International Conference on Machine Learning. 2001: 577-584.
[3] Krishna K, Murty M N.Genetic K-Means Algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics: Part B(Cybernetics), 1999, 29(3): 433-439.
[4] Arai K, Ali R B.Hierarchical K-means: An Algorithm for Centroids Initialization for K-means[J]. Reports of the Faculty of Science and Engineering, 2007, 36(1): 25-31.
[5] 雷小锋, 谢昆青, 林帆, 等. 一种基于K-Means局部最优性的高效聚类算法[J]. 软件学报, 2008, 19(7): 1683-1692.
[5] (Lei Xiaofeng, Xie Kunqing, Lin Fan, et al.An Efficient Clustering Algorithm Based on Local Optimality of K-Means[J]. Journal of Software, 2008, 19(7): 1683-1692.)
[6] 曾亮. 多层次模糊评估法在民航不安全事件风险评估中的应用[J]. 中国安全科学学报, 2008, 18(1): 131-138.
[6] (Zeng Liang.Application of Multi-layer Fuzzy Evaluation Method to Risk Assessment in Civil Aviation[J]. China Safety Science Journal, 2008, 18(1): 131-138.)
[7] 王衍洋, 李敬, 曹义华. 中国民航安全评价方法研究[J]. 中国安全生产科学技术, 2008, 4(5): 111-113.
[7] (Wang Yanyang, Li Jing, Cao Yihua.Study on Safety Assessment of China Civil Aviation Industry[J]. Journal of Safety Science and Technology, 2008, 4(5): 111-113.)
[8] 吕学梅, 王永刚, 荆增强. 风险管理在民航事故预防中的应用[J]. 安全与环境学报, 2006, 6(S1): 153-155.
[8] (Lv Xuemei, Wang Yonggang, Jing Zengqiang.Application of Risk Management in Civil Aviation System[J]. Journal of Safety and Environment, 2006, 6(S1): 153-155.)
[9] 王永刚, 张秀艳. 民航系统三维风险评价模型的研究[J]. 中国水运, 2007, 5(7): 147-148.
[9] (Wang Yonggang, Zhang Xiuyan.The Research of Three-Dimension Risk Assessment Model for Civil Aviation System[J]. China Water Transport, 2007, 5(7): 147-148.)
[10] Stewart M G, Mueller J.Terrorism Risks and Cost-Benefit Analysis of Aviation Security[J]. Risk Analysis, 2013, 33(5): 893-908.
[11] 郭璇, 吴文辉, 肖治庭. 基于事件树和PRA的民航机场恐怖袭击风险评估模型[J]. 计算机应用研究, 2017, 34(6): 1809-1811.
[11] (Guo Xuan, Wu Wenhui, Xiao Zhiting.Civil Aviation Airport Terrorism Risk Assessment Model Based on Event Tree and PRA[J]. Application Research of Computers, 2017, 34(6): 1809-1811.)
[12] 王振, 刘茂. 定量风险分析在恐怖袭击风险评估中的应用[J]. 中国公共安全:学术版, 2006, 7(4): 18-22.
[12] (Wang Zhen, Liu Mao.Application of Quantitative Risk Assessment on Terrorism Attack[J]. China Public Security: Academy Edition, 2006, 7(4): 18-22.)
[13] 贺元骅, 魏中许, 蔡正涛. 民航公共交通运输系统恐怖威胁评估模型分析[J]. 中国公共安全:学术版, 2009, 14(1): 11-14.
[13] (He Yuanhua, Wei Zhongxu, Cai Zhengtao.A Study of Threat Assessing Model on Terrorism in Traffic System[J]. China Public Security: Academy Edition, 2009, 14(1): 11-14.)
[14] 梅建明, 刘明辉, 蒋东龙. 城市反恐危机管理: 理论、方法与实务[M]. 北京: 中国人民公安大学出版社, 2017.
[14] (Mei Jianming, Liu Minghui, Jiang Donglong.Crisis Management of Urban Counter Terrorism: Theory, Methods and Practice[M]. Beijing: Publishing House of People’s Public Security University of China, 2017.)
[15] Institute for Economics & Peace. Global Terrorism Index [EB/OL]. [2018-02-20]. .
[1] Ke Li,Yuya Sasaki. Analyzing Sentiment Distribution with Spatial-textual Data of Multi-dimensional Clustering[J]. 数据分析与知识发现, 2019, 3(7): 14-22.
[2] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[3] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[4] Jiang Wu,Yinghui Zhao,Jiahui Gao. Research on Weibo Opinion Leaders Identification and Analysis in Medical Public Opinion Incidents[J]. 数据分析与知识发现, 2019, 3(4): 53-62.
[5] Lianjie Xiao,Mengrui Gao,Xinning Su. An Under-sampling Ensemble Classification Algorithm Based on Fuzzy C-Means Clustering for Imbalanced Data[J]. 数据分析与知识发现, 2019, 3(4): 90-96.
[6] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[7] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[8] Tao Zhang,Haiqun Ma. Clustering Policy Texts Based on LDA Topic Model[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[9] Xiangdong Li,Fan Gao,Youhai Li. Categorizing Documents Automatically within Common Semantic Space[J]. 数据分析与知识发现, 2018, 2(9): 66-73.
[10] Xiufang Wang,Shu Sheng,Yan Lu. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[11] Zhen Yang,Hongjun Wang,Yu Zhou. A Clustering Algorithm with Adaptive Cut-off Distance and Cluster Centers[J]. 数据分析与知识发现, 2018, 2(3): 39-48.
[12] Hongwei Liu,Hongming Gao,Li Chen,Mingjun Zhan,Zhouyang Liang. Identifying User Interests Based on Browsing Behaviors[J]. 数据分析与知识发现, 2018, 2(2): 74-85.
[13] Xiaoting Jia,Mingyang Wang,Yu Cao. Automatic Abstracting of Chinese Document with Doc2Vec and Improved Clustering Algorithm[J]. 数据分析与知识发现, 2018, 2(2): 86-95.
[14] Huixiang Xiong,Jiaxin Ye,Wuxuan Jiang. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[15] Wen’gang Feng,Yan Li,Fuhai Li,Xin Wang,Xiping Zhou. Risk Assessment and Decision Analysis of Civil Aviation Security with Risk Ranking and Decision Tree[J]. 数据分析与知识发现, 2018, 2(10): 27-36.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938