Please wait a minute...
Data Analysis and Knowledge Discovery  2018, Vol. 2 Issue (11): 28-36    DOI: 10.11925/infotech.2096-3467.2018.0832
Current Issue | Archive | Adv Search |
Recommendation Algorithm for Post-Context Filtering Based on TF-IDF: Case Study of Catering O2O
Cong Yin1,Liyi Zhang2()
1Intellectual Property School, Chongqing University of Technology, Chongqing 400054, China
2School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF(821 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper carries out an in-depth study on context-integrated and personalized recommendation, aiming to address the issue of information overload. [Methods] We proposed a new contextual preference prediction model based on TF-IDF algorithm for post-context filtering, as well as the contextual association probability and universal importance. Then, we adjusted the initial scores of traditional recommendation with the help of item category preferences to generate the final list. [Results] We conducted an empirical study on catering industry and found that the proposed algorithm yielded better results. [Limitations] The accuracy of the context association needs to be improved. [Conclusions] Context information plays an important role in user behavior and decision making. More research is needed to improve the personalized recommendation based on context modeling.

Key wordsContext Information      Contextual Post-Filtering Recommendation      TF-IDF      Contextual Preference      Item Category Preference     
Received: 26 July 2018      Published: 11 December 2018

Cite this article:

Cong Yin,Liyi Zhang. Recommendation Algorithm for Post-Context Filtering Based on TF-IDF: Case Study of Catering O2O. Data Analysis and Knowledge Discovery, 2018, 2(11): 28-36.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.0832     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2018/V2/I11/28

[1] Borchers A, Herlocker J, Konstan J, et al.Ganging Up on Information Overload[J]. Computer, 1998, 31(4): 106-108.
[2] Herlocker J L, Konstan J A, Borchers A, et al.An Algorithmic Framework for Performing Collaborative Filtering[C]// Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 1999: 230-237.
[3] Bettman J R, Luce M F, Payne J W.Constructive Consumer Choice Processes[J]. Journal of Consumer Research, 1998, 25(3): 187-217.
[4] Si H, Kawahara Y, Kurasawa H, et al.A Context-aware Collaborative Filtering Algorithm for Real World Oriented Content Delivery Service[C]//Proceedings of ubiPCMM, 2005. .
[5] Gorgoglione M, Palmisano C, Tuzhilin A.Personalization in Context: Does Context Matter When Building Personalized Customer Models?[C]// Proceedings of the 6th IEEE International Conference on Data Mining, 2006: 222-231.
[6] Mallat N, Rossi M, Tuunainen V K, et al.The Impact of Use Context on Mobile Services Acceptance: The Case of Mobile Ticketing[J]. Information and Management, 2009, 46(3): 190-195.
[7] 庄贵军, 周南, 李福安. 情境因素对于顾客购买决策的影响(一个初步的研究)[J]. 数理统计与管理, 2004, 23(4): 7-13.
[7] (Zhuang Guijun, Zhou Nan, Li Fuan.Impact of Situational Factors on Shoppers’ Buying Decision: An Initial Study[J]. Journal of Applied Statistics and Management, 2004, 23(4): 7-13.)
[8] 涂黎. 情境因素对消费者冲动购买行为的影响研究[D]. 武汉: 湖北大学, 2010.
[8] (Tu Li.The Influence of Situational Factors on Impulse Buying Behavior[D]. Wuhan: Hubei University, 2010.)
[9] 胡慕海, 蔡淑琴. 松耦合情境的个性化推荐方法扩展研究[J]. 图书情报工作, 2010, 54(S2): 371-376.
[9] (Hu Muhai, Cai Shuqin.Personalized Recommendation Method on Loosely Coupled Situation with Extended Research[J]. Library and Information Service, 2010, 54(S2): 371-376.
[10] Langseth H, Nielsen T D.A Latent Model for Collaborative Filtering[J]. International Journal of Approximate Reasoning, 2012, 53(4): 447-466.
[11] 吴颜, 沈洁, 顾天竺, 等. 协同过滤推荐系统中数据稀疏问题的解决[J]. 计算机应用研究, 2007, 24(6): 94-97.
[11] (Wu Yan, Shen Jie, Gu Tianzhu, et al.Algorithm for Sparse Problem in Collaborative Filtering[J]. Application Research of Computers, 2007, 24(6): 94-97.)
[12] Wang J, Zhu Y, Li D, et al.Joint User Attributes and Item Category in Factor Models for Rating Prediction[A]// Zhang Y, Wu J, Zhou C, et al. Multiple-Instance Learning with Evolutionary Instance Selection [M]. Springer International Publishing, 2016: 277-296.
[13] Stefanidis K, Pitoura E, Vassiliadis P.Adding Context to Preferences[C]// Proceedings of the 23rd International Conference on Data Engineering. IEEE, 2007: 846-855.
[14] Stefanidis K, Pitoura E.Fast Contextual Preference Scoring of Database Tuples[C]// Proceedings of the 11th International Conference on Extending Database Technology. 2008: 344-355.
[15] Shin D, Lee J, Yeon J, et al.Context-Aware Recommendation by Aggregating User Context[C]// Proceedings of the 7th IEEE Conference on Commerce and Enterprise Computing. 2009: 423-430.
[16] Jrad Z, Aufure M A, Hadjouni M.A Contextual User Model for Web Personalization[C]// Proceedings of the 2007 International Conference on Web Information Systems Engineering. 2007: 350-361.
[17] Hong J, Suh E H, Kim J, et al.Context-aware System for Proactive Personalized Service Based on Context History[J]. Expert Systems with Applications, 2009, 36(4): 7448-7457.
[18] Bunningen A H V, Fokkinga M M, Apers P M G, et al. Ranking Query Results Using Context-Aware Preferences[C]// Proceedings of the 23rd International Conference on Data Engineering Workshop. IEEE, 2007: 269-276.
[19] Panniello U, Tuzhilin A, Gorgoglione M, et al.Experimental Comparison of Pre- vs. Post-filtering Approaches in Context-aware Recommender Systems[C]// Proceedings of the 3rd ACM Conference on Recommender Systems. 2009: 265-268.
[20] 闫光辉, 陈勇, 赵红运, 等. 微博个性化信息流推荐研究[J]. 计算机工程与设计, 2014, 35(6): 2013-2016.
[20] (Yan Guanghui, Chen Yong, Zhao Hongyun, et al.Personalized Tweet Recommendation[J]. Computer Engineering and Design, 2014, 35(6): 2013-2016.)
[21] 张新猛, 蒋盛益, 李霞, 等. 基于网络和标签的混合推荐算法[J]. 计算机工程与应用, 2015, 51(1): 119-124.
[21] (Zhang Xinmeng, Jiang Shengyi, Li Xia, et al.Hybrid Recommendation Algorithm Based on Network and Tag[J]. Computer Engineering and Applications, 2015, 51(1): 119-124.)
[22] 陈功平, 王红. 改进Pearson相关系数的个性化推荐算法[J]. 山东农业大学学报: 自然科学版, 2016, 47(6): 940-944.
[22] (Chen Gongping, Wang Hong.A Personalized Recommendation Algorithm on Improving Pearson Correlation Coefficient[J]. Journal of Shandong Agricultural University: Natural Science Edition, 2016, 47(6): 940-944.)
[23] Wu Y, Ma J.A Genre-based Hybrid Collaborative Filtering Algorithm[J]. Journal of Computational Information Systems, 2014, 10(22): 9831-9838.
[24] 李大学, 谢名亮, 赵学斌. 结合项目类别信息的协同过滤推荐算法[J]. 重庆邮电大学学报: 自然科学版, 2010, 22(6): 823-827.
[24] (Li Daxue, Xie Mingliang, Zhao Xuebin.Collaborative Filtering Recommendation Algorithm Using Item Category Information[J]. Journal of Chongqing University of Posts and Telecommunications: Natural Science Edition, 2010, 22(6): 823-827.)
[25] 潘宇, 林鸿飞. 基于语义极性分析的餐馆评论挖掘[J]. 计算机工程, 2008, 34(17): 208-210.
[25] (Pan Yu, Lin Hongfei.Restaurant Reviews Mining Based on Semantic Polarity Analysis[J]. Computer Engineering, 2008, 34(17): 208-210.)
[1] Changbing Li,Chongpeng Pang,Meiping Li. Extracting Product Features with Weight-based Apriori Algorithm[J]. 数据分析与知识发现, 2017, 1(9): 83-89.
[2] Yue He,Min Xiao,Yue Zhang. Sentiment Analysis of Trending Topics Based on Relevance[J]. 数据分析与知识发现, 2017, 1(3): 46-53.
[3] Xu Dongdong, Wu Shaobo. An Improved TF-IDF Feature Selection Based on Categorical Description[J]. 现代图书情报技术, 2015, 31(3): 39-48.
[4] Lu Yonghe, Li Yanfeng. A Feature Selection Based on Consideration of Multiple Factors[J]. 现代图书情报技术, 2013, (5): 34-39.
[5] Qin Shian, Li Fayun. Improved TF-IDF Method in Text Classification[J]. 现代图书情报技术, 2013, 29(10): 27-30.
[6] Ye Chunlei, Leng Fuhai. Study on the Keyword Extraction from Roadmap Based on the Lexical Chains[J]. 现代图书情报技术, 2013, 29(1): 50-56.
[7] Gu Jun, Wang Hao. Study on Term Extraction on the Basis of Chinese Domain Texts[J]. 现代图书情报技术, 2011, 27(4): 29-34.
[8] Liang Wenchao, Xu Chaojun, Shen Shusheng. Application of the Fuzzy Rule Algorithm in the Classification of Educational Information[J]. 现代图书情报技术, 2011, 27(1): 94-98.
[9] Xu Deshan, Zhang Zhixiong, Wang Feng, Xing Meifeng. English Term Extraction Based on Context Analysis & Statistical Characteristic[J]. 现代图书情报技术, 2010, 26(12): 28-33.
[10] Yang Zhizhuo,Han Xie. An Algorithm of Text Information Filtering Based on Feature Extraction[J]. 现代图书情报技术, 2008, 24(4): 29-34.
[11] Qian Aibing,Jiang Lan . Automatic Classification Based on News Titles for Chinese News Web Pages[J]. 现代图书情报技术, 2008, 24(10): 59-68.
[12] Hang Yueqin,Yao Ying,Shen Jie . Towards Context Query Information Extraction Based on Single Document[J]. 现代图书情报技术, 2006, 1(10): 30-33.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn