Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (5): 19-26    DOI: 10.11925/infotech.2096-3467.2018.0881
Current Issue | Archive | Adv Search |
Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.
Wancheng Chen(),Haoran Dai,Yinghan Jin
School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
Download: PDF(1405 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      

[Objective] This paper proposes a model based on the HEDONIC theory, aiming to assess home prices more efficiently, cost-effectively and accurately. [Methods] We adopted the spatial analysis method to extract important features from pre-processed data. Then, we built the model with Random Forest, KNN and Neural Networks. [Results] We examined our model with property price data of Seattle (USA) from 2014 to 2015 and found its precision was 11.20% higher than the linear model. [Limitations] The sample data was not retrieved from the same time slice, which might affect the performance of our model. Using this model to assess home prices in China might be biased due to different market environment and other factors. [Conclusions] The proposed model is a reliable method to appraise property prices.

Key wordsHouse Price Evaluation      HEDONIC Model      Random Forest      Neural Network      KNN     
Received: 06 August 2018      Published: 03 July 2019

Cite this article:

Wancheng Chen,Haoran Dai,Yinghan Jin. Appraising Home Prices with HEDONIC Model: Case Study of Seattle, U.S.. Data Analysis and Knowledge Discovery, 2019, 3(5): 19-26.

URL:     OR

[1] Carbone R, Longini R L.A Feedback Model for Automated Real Estate Assessment[J]. Management Science, 1977, 24(3): 241-248.
[2] Gloudemans R J.Comparison of Three Residential Regression Models: Additive, Multiplicative, and Nonlinear[J]. Assessment Journal, 2002, 9(4): 25-36.
[3] Waugh F V.Quality Factors Influencing Vegetable Prices[J]. Journal of Farm Economics, 1928, 10(2): 185-196.
[4] Ridker R G, Henning J A.The Determinants of Residential Property Values with Special Reference to Air Pollution[J]. Review of Economics & Statistics, 1967, 49(2): 246-257.
[5] Lancaster K J.A New Approach to Consumer Theory[J]. Journal of Political Economy, 1967, 74(2): 132-157.
[6] Rosen S.Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition[J]. Journal of Political Economy, 1974, 82(1): 34-55.
[7] Chambers D N.The Racial Housing Price Differential and Racially Transitional Neighborhoods[J]. Journal of Urban Economics, 1992, 32(2): 214-232.
[8] Chica-Olmo J.Prediction of Housing Location Price by a Multivariate Spatial Method: Cokriging[J]. Journal of Real Estate Research, 2007, 29(1): 95-114.
[9] Wheeler D C, Páez A, Spinney J, et al.A Bayesian Approach to Hedonic Price Analysis[J]. Papers in Regional Science, 2013, 93(3): 663-683.
[10] Ceccato V, Wilhelmsson M.The Impactof Crimeon Apartment Prices: Evidencefrom Stockholm, Sweden[J]. GeografiskaAnnaler, 2011, 93(1): 81-103.
[11] Cohen J P, Cromley R G, Banach K T.Are Homes Near Water Bodies and Wetlands Worth More or Less? An Analysis of Housing Prices in One Connecticut Town[J]. Growth & Change, 2015, 46(1): 114-132.
[12] 张维阳, 李慧, 段学军. 城市轨道交通对住宅价格的影响研究——以北京市地铁一号线为例[J]. 经济地理, 2012, 32(2): 46-51.
[12] (Zhang Weiyang, Li Hui, Duan Xuejun.The Impacts of Rail Transit on Property Values——The Case of No.1 Line in Beijing[J]. Economic Geography, 2012, 32(2): 46-51.)
[13] NOAA Satellites and Information. Mean Number of Days with Precipitation 0.01 Inch or More[EB/OL]. [2018-02-27]. .
[14] United States Census Bureau.2014. Community Facts [DB/OL]. [2018-02-27]. .
[15] Data USA.SEATTLE, WA[EB/OL]. [2018-02-27]..
[16] Federal Bureau of Investigation. The FBI Releases 2015 Crime Statistics for Washington State [R]. [2018-02-27]. .
[17] 郑佳. 基于HEDONIC的商品住宅批量评估研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
[17] (Zheng Jia.Research on Hedonic Model in the Mass Appraisal of Commercial Housing [D]. Harbin:Harbin Institute of Technology,2014.)
[18] Perry C.The Neighborhood Unit[M]. Thoemmes Press, 1998.
[1] Zhenyu He,Xiangxiang Dong,Qinghua Zhu. Classifying Baidu Encyclopedia Entries with User Behaviors[J]. 数据分析与知识发现, 2019, 3(6): 117-122.
[2] Kan Liu,Lu Chen. Deep Neural Network Learning for Medical Triage[J]. 数据分析与知识发现, 2019, 3(6): 99-108.
[3] Yuemei Xu,Sining Lv,Lianqiao Cai,Xiaoya Zhang. Analyzing News Topic Evolution with Convolutional Neural Networks and Topic2Vec[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[4] Xiaoyu Ma,Han Zhang,Yuhong Zhao. Building Childhood Asthma Prediction Model with Artificial Neural Network and BRFSS Database[J]. 数据分析与知识发现, 2018, 2(8): 10-15.
[5] Cheng Zhou,Hongqin Wei. Identifying Crowd Participants with Modified Random Forests Algorithm[J]. 数据分析与知识发现, 2018, 2(7): 46-54.
[6] Yuan Chen,Chaoqun Wang,Zhongyi Hu,Jiang Wu. Identifying Malicious Websites with PCA and Random Forest Methods[J]. 数据分析与知识发现, 2018, 2(4): 71-80.
[7] Liu Liu,Dongbo Wang. Identifying Interdisciplinary Social Science Research Based on Article Classification[J]. 数据分析与知识发现, 2018, 2(3): 30-38.
[8] Liyi Zhang,Yiran Li,Xuan Wen. Predicting Repeat Purchase Intention of New Consumers[J]. 数据分析与知识发现, 2018, 2(11): 10-18.
[9] Hu Meng,Xiaobei Liang,Yixiong Yang,Min Li. Evaluating and Optimizing Supply Chains with LMBP Algorithm[J]. 数据分析与知识发现, 2018, 2(11): 37-45.
[10] Yuying Wu,Ping Sun,Xijun He,Guorui Jiang. Predicting Transactions Among Agents in Patent Transfer Weighted Networks for New Energy[J]. 数据分析与知识发现, 2018, 2(11): 73-79.
[11] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[12] Xiaoxi Huang,Hanyu Li,Rongbo Wang,Xiaohua Wang,Zhiqun Chen. Recognizing Metaphor with Convolution Neural Network and SVM[J]. 数据分析与知识发现, 2018, 2(10): 77-83.
[13] Jiaheng Hu,Yonghua Cen,Chengyao Wu. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[14] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Weimin Lv,Xiaomei Wang,Tao Han. Recommending Scientific Research Collaborators with Link Prediction and Extremely Randomized Trees Algorithm[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938