Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (4): 107-116    DOI: 10.11925/infotech.2096-3467.2018.1100
Current Issue | Archive | Adv Search |
Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of
Xiaolan Wu1,2,Chengzhi Zhang2()
1School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu 233030, China
2School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Download: PDF(2311 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      

[Objective] This study aims to explore the knowledge flow on academic social networks. [Methods] Take as the representative, we first collect all the data about users’ research directions and friends. Then, we use the simple correlation coefficient to measure the distribution relation of knowledge flow of different disciplines users, and adopt Louvain algorithm to detect the community structure among first-level disciplines. [Results] It is found that the knowledge flow of different disciplines is similar to each other through simple correlation coefficient. There are four knowledge-flow communities among first-level disciplines detected by Louvain algorithm. [Limitations] We construct knowledge flow network only based on friends’ relationship, without considering comments and recommendation relationship. [Conclusions] Through our research, we find that “Life Science” and “Medical Science” showed the most obvious disciplinary affinity in In addition, there are four main knowledge flow paths cross discipline departments, such as “Earth Science - Life Science - Medical Science”, “Chemical Science - Engineering Material - Mathematical Science-Information Science”, “Earth Science - Engineering Materials”, “Information Science - Management Science”.

Key wordsAcademic Social Networks      Knowledge Exchange Model      Disciplinary Community      Louvain Algorithm     
Received: 08 October 2018      Published: 29 May 2019

Cite this article:

Xiaolan Wu,Chengzhi Zhang. Analysis of Knowledge Flow Based on Academic Social Networks:
A Case Study of Data Analysis and Knowledge Discovery, 2019, 3(4): 107-116.

URL:     OR

[1] Bradford S C.Sources of Information on Specific Subjects[J]. Engineering, 1934, 137: 85-86.
[2] 徐晓艺, 杨立英. 科研合作视角下的学科知识流动分析方法研究——以药物化学学科为例[J]. 图书情报工作, 2014, 58(19): 83-91.
[2] (Xu Xiaoyi, Yang Liying.Metholgoy Research of Disciplinary Knowledge Flows in Scientific Collaboration: A Case of “Pharmaceutical Chemistry” Discipline[J]. Library and Information Service, 2014, 58(19): 83-91.)
[3] 吴江, 金妙, 陈君. 基金视角下的学科知识流动网络构建与分析[J]. 图书情报工作, 2016, 60(8): 79-85.
[3] (Wu Jiang, Jin Miao, Chen Jun.Construction and Analysis of Interdisciplinary Knowledge Flow Network Based on Co-occurences of Funding Application Codes[J]. Library and Information Service, 2016, 60(8): 79-85.)
[4] Cronin B, Meho L I.The Shifting Balance of Intellectual Trade in Information Studies[J]. Journal of the American Society for Information Science & Technology, 2008, 59(4): 551-564.
[5] 周秋菊, 杨立英, 岳婷, 等. 基于期刊同被引和互引网络的学科结构和知识流动研究[J]. 情报杂志, 2014, 33(8): 84-91.
[5] (Zhou Qiuju, Yang Liying, Yue Ting, et al.Exploring the Subject Structure and Knowledge Flow Based on Journal Co-citation Network and Inter-citation Network[J]. Journal of Information, 2014, 33(8): 84-91.)
[6] 赵星, 谭旻, 余小萍, 等. 我国文科领域知识扩散之引文网络探析[J]. 中国图书馆学报, 2012, 38(5): 59-67.
[6] (Zhao Xing, Tan Min, Yu Xiaoping, et al.Exploring the Citation Networks for Knowledge Diffusion of Humanities and Social Sciences in China[J]. Journal of Library Science in China, 2012, 38(5): 59-67.)
[7] Chua A Y K, Yang C C. The Shift Towards Multi-Disciplinarity in Information Science[J]. Journal of the American Society for Information Science and Technology, 2008, 59(13): 2156-2170.
[8] 邱均平, 曹洁. 不同学科间知识扩散规律研究——以图书情报学为例[J]. 情报理论与实践, 2012, 35(10): 1-5.
[8] (Qiu Junping, Cao Jie.Research on Knowledge Diffusion Among Different Disciplines——Take Library and Information Science for Example[J]. Information Studies: Theory and Application, 2012, 35(10): 1-5.)
[9] 曾倩, 杨思洛. 国内外图书情报学科知识交流的比较研究——以期刊引证分析为视角[J]. 情报理论与实践, 2013, 36(10): 114-119, 108.
[9] (Zeng Qian, Yang Siluo.A Comparative Study of Knowledge Exchange Between Library and Information Science at Home and Abroad: From the Perspective of Citation Analysis[J]. Information Studies: Theory and Application, 2013, 36(10): 114-119, 108.)
[10] Yan E.Finding Knowledge Paths Among Scientific Disciplines[J]. Journal of the Association for Information Science & Technology, 2014, 65(11): 2331-2347.
[11] Tang L.Does “Birds of a Feather Flock Together” Matter—Evidence from a Longitudinal Study on US-China Scientific Collaboration[J]. Journal of Informetrics, 2013, 7(2): 330-344.
[12] 徐晓艺, 杨立英. 基于合著论文的学科知识流动网络的特征分析——以“药物化学”学科为例[J]. 图书情报工作, 2015, 59(1): 89-98.
[12] (Xu Xiaoyi, Yang Liying.Analysis of Disciplinary Knowledge Flows Network Based on Coauthored Papers: A Case of Medicinal Chemistry Discipline[J]. Library and Information Service, 2015, 59(1): 89-98.)
[13] Coleman A S.Academic Blogs[J]. Reference Librarian, 2005(3):10-17.
[14] 胡昌平, 佘晶晶, 邵其赶. 学术博客中的创新知识转移[J]. 情报杂志, 2008, 27(5): 3-6.
[14] (Hu Changping, She Jingjing, Shao Qigan.Research on the Innovative Knowledge Transferring in Academic Blog[J]. Journal of Information, 2008, 27(5): 3-6.)
[15] 贾新露, 王曰芬. 学术社交网络的概念、特点及研究热点[J]. 图书馆学研究, 2016(5): 7-13.
[15] (Jia Xinlu, Wang Yuefen. The Concept, Characteristics and Research Hotspots of Academic Social Networks[J]. Research on Library Science, 2016(5): 7-13.)
[16] Oh J S, Jeng W.Groups in Academic Social Networking Services—An Exploration of Their Potential as a Platform for Multi-disciplinary Collaboration[C]// Proceedings of the 3rd International Conference on Privacy, Security, Risk and Trust. 2011.
[17] Jiang J, Ni C, He D, et al.Mendeley Group as a New Source of Interdisciplinarity Study: How Do Disciplines Interact on Mendeley?[C]// Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital libraries. 2013.
[18] 王晓光. 博客社区内的非正式交流: 基于网络链接的实证分析[J]. 情报学报, 2009, 28(2): 248-256.
[18] (Wang Xiaoguang.Information Communication in Blog Community: An Empirical Analysis of Web Links[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(2): 248-256.)
[19] Newman M E J, Girvan M.Finding and Evaluating Community Structure in Networks[J]. Physical Review E, 2004, 69(2): Article No. 026113.
[20] 邱均平, 王菲菲. 基于博客社区好友链接的知识交流状况分析——以科学网博客为例[J]. 图书情报知识, 2011(6): 25-33.
[20] (Qiu Junping, Wang Feifei.Anaysis About Knowledge Communication Network Based on Friends Link in the Blog Community——A Case Study of the Blog Community in[J]. Documentation, Information and Knowledge, 2011(6): 25-33.)
No related articles found!
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938