Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (7): 73-84    DOI: 10.11925/infotech.2096-3467.2018.1269
Current Issue | Archive | Adv Search |
Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud
Shiqi Deng,Liang Hong()
School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF(1341 KB)   HTML ( 4
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to build domain ontology for intelligent applications, aiming to enhance the capability of domain knowledge representing and application development. [Methods] We proposed the application-driven circulation method to model cross-domain knowledge based on the demands of intelligent applications. It has the structure of “requirement + construction + evaluation”, so that requirements play leading role in ontology construction. We took the field of anti telephone fraud as an example, and constructed the anti-fraud ontology of the intelligent requirements. [Results] Our anti-fraud domain ontology represented a wide range of cross-domain knowledge and effectively supported intelligent anti-fraud applications, which were based on the semantics of fraudulent calls. [Limitations] More research is needed to examine the requirements of intelligent applications. [Conclusions] The proposed method promotes more research in domain ontology construction and anti-fraud methods.

Key wordsOntology Construction      Intelligent Application      Ontology Evaluation      Anti Telephone Fraud     
Received: 14 November 2018      Published: 06 September 2019
:  G350  
Corresponding Authors: Liang Hong     E-mail: hong@whu.edu.cn

Cite this article:

Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud. Data Analysis and Knowledge Discovery, 2019, 3(7): 73-84.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.1269     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I7/73

专业概念 概念定义
诈骗事件 电话诈骗事件的简称, 包含行为人、通话行为与内容、诈骗流程、时空特征等, 反诈本体对事件各部分进行 建模。
诈骗场景 诈骗分子用于诈骗的背景信息, 如冒充公检法类型的电话诈骗场景为公检法, 是区分诈骗事件类型的主要依据。
诈骗流程 诈骗分子实施诈骗的过程, 由具有时序性的各步骤组成, 是诈骗手段的集中体现、诈骗事件分析的核心。
反向数据 电话诈骗事件及其通话数据, 诈骗分子在通话时提供的信息, 如电话、身份、操作等用于诈骗的虚假信息。
正向数据 诈骗场景相关的各领域的正确规范信息, 如公检法机构的正常电话、地点、权限等数据。
评估指标 计算公式 含义
关系
丰富度
$RR=(\left| P \right|)/(\left| SC \right|+\left| P \right|)$ (1) 反映关系的多样性, 以及各类关系在本体中的分布情况; 拥有除继承关系外更多其他关系的本体, 往往比仅有继承关系的能表达出更丰富的信息。
其中, $\left| SC \right|$继承关系数量; $\left| P \right|$为除继承关系外的其他关系数量
属性
丰富度
$AR=(\left| att \right|)/(\left| C \right|)$ (2) 类的属性多少关系到类的相关信息能否被充分表示, 一般而言, 属性越多的本体内涵越丰富, 本体质量越高。
其中, $\left| att \right|$为所有类的属性总量; $\left| C \right|$为类的总量
继承关系
丰富度
$I{{R}_{C}}=({{\mathop{\sum }^{}}_{{{C}_{i}}\in C}}|{{H}^{C}}({{C}_{1}},{{C}_{i}})|)/(\left| C \right|)$ (3) 描述本体中不同层次继承关系的数量, 刻画本体的体系结构形态: 继承层次多但各类子类少的本体为垂直型, 反之为水平型。
其中, $|{{H}^{C}}({{C}_{1}},{{C}_{i}})|)$为每个类${{C}_{i}}$的子类${{C}_{1}}$的数量; $\left| C \right|$为类的总量
[1] Gruber T R . A Translation Approach to Portable Ontology Specifications[J]. Knowledge Acquisition, 1993,5(2):199-220.
[2] Stenzhorn H, Schulz S, Beiwanger E, et al. BioTop and ChemTop: Top-Domain Ontologies for Biology and Chemistry [C]// Proceedings of the 2007 International Conference on Posters and Demonstrations. 2008,401:50-51.
[3] Uschold M, Gruninger M . Ontologies: Principles, Methods and Applications[J]. Knowledge Engineering Review, 1996,11(2):93-136.
[4] Noy N F , McGuinness D L. Ontology Development 101: A Guide to Creating Your First Ontology[R]. Stanford Knowledge Systems Laboratory, 2001.
[5] Maedche A, Staab S . Ontology Learning for the Semantic Web[J]. Intelligent Systems IEEE, 2001,16(2):72-79.
[6] Doran P, Tamma V, Iannone L. Ontology Module Extraction for Ontology Reuse: An Ontology Engineering Perspective [C]// Proceedings of the 16th ACM Conference on Information and Knowledge Management. ACM, 2007: 61-70.
[7] 付苓 . 大数据环境下领域本体构建框架研究[J]. 图书馆, 2017(11):66-71.
[7] ( Fu Ling . Research on Construction Framework of Domain Ontology for Big Data[J]. Library, 2017(11):66-71.)
[8] 于娟, 施文洁, 朱正祥 . 基于本体的人物关系一致性检测方法研究[J]. 情报学报, 2018,37(1):98-105.
[8] ( Yu Juan, Shi Wenjie, Zhu Zhengxiang . Consistency Detection of Interpersonal Relationship: An Ontology-based Method[J]. Journal of the China Society for Scientific and Technical Information, 2018,37(1):98-105.)
[9] 徐雷 . 本体评估研究进展[J]. 情报学报, 2016,35(7):772-784.
[9] ( Xu Lei . Research Advances in Ontology Evaluation[J]. Journal of the China Society for Scientific and Technical Information, 2016,35(7):772-784.)
[10] 杨晶, 曹金璇, 高华林 . 基于本体的电信诈骗分析知识库模型[J]. 计算机工程与设计, 2017,38(6):1418-1423.
[10] ( Yang Jing, Cao Jinxuan, Gao Hualin . Telecommunications Fraud Case Analysis Knowledge Base Model Based on Ontology[J]. Computer Engineering and Design, 2017,38(6):1418-1423.)
[11] Carvalho R, Goldsmith M, Creese S. Applying Semantic Technologies to Fight Online Banking Fraud [C]// Proceedings of the 2015 European Intelligence and Security Informatics Conference. IEEE, 2015: 61-68.
[12] Tang X B, Wei W, Liu G C , et al. An Inference Model of Medical Insurance Fraud Detection: Based on Ontology and SWRL[J]. Knowledge Organization, 2017(2):84-96.
[13] 司成, 张红旗, 汪永伟 , 等. 基于本体的网络安全态势要素知识库模型研究[J]. 计算机科学, 2015,42(5):173-177.
[13] ( Si Cheng, Zhang Hongqi, Wang Yongwei , et al. Research on Network Security Situational Elements Knowledge Base Model Based on Ontology[J]. Computer Science, 2015,42(5):173-177.)
[14] Yao Y, Ma X, Liu H, et al. A Semantic Knowledge Base Construction Method for Information Security [C]// Proceedings of the 13th International Conference on Trust, Security and Privacy in Computing and Communications. IEEE, 2014: 803-808.
[15] 李力卡, 马泽雄, 陈庆年 , 等. 大数据技术在防诈骗系统应用及运营实践[J]. 广东通信技术, 2016,36(10):2-5, 30.
[15] ( Li Lika, Ma Zexiong, Chen Qingnian , et al. Application and Operation Practice of Big Data Technology in Anti-fraud System[J]. Guangdong Communication Technology, 2016,36(10):2-5, 30.)
[16] 李力卡, 马泽雄, 陈庆年 , 等. 电话诈骗防治技术解决方案与运维对策研究[J]. 电信科学, 2014,30(11):166-172.
[16] ( Li Lika, Ma Zexiong, Chen Qingnian , et al. Research of Technology Solutions and Operation Countermeasures to Telephone Fraud Prevention and Control[J]. Telecommunications Science, 2014,30(11):166-172.)
[17] 张慧嫦, 李力卡 . 基于信令的电话诈骗行为检测及防范研究[J]. 广东通信技术, 2016,36(10):6-9, 45.
[17] ( Zhang Huichang, Li Lika . Study on Detection and Prevention of Telephone Fraud Based on Signaling[J]. Guangdong Communication Technology, 2016,36(10):6-9, 45.)
[18] 王志刚, 曲劲光 . 基于大数据的电信诈骗治理技术研究[J]. 电信工程技术与标准化, 2017,30(4):86-89.
[18] ( Wang Zhigang, Qu Jinguang . Research on Anti Telecommunications Fraud Technology Based on Big Data[J]. Telecom Engineering Technics and Standardization, 2017,30(4):86-89.)
[19] 腾讯安全“守护者计划”.鹰眼智能反电话诈骗盒子[EB/OL]. [ 2018- 05- 14]. .
[19] ( Tencent Security “Guardian Program”. Hawkeye Intelligent Anti-Phone Fraud Box [EB/OL]. [ 2018- 05- 14].
[20] 马博 . 一种基于语音语义内容分析的防电信电话诈骗方法和系统: 中国, CN103179122 B[P]. 2015.
[20] ( Ma Bo . A Method and System for Anti-Telephone Fraud Based on Speech Semantic Content Analysis: China, CN103179122 B[P]. 2015.)
[21] 上海欣方智能系统有限公司 . 对可疑号码进行诈骗样本甄别归类及拦截的方法及系统:中国, CN201611052505.8[P]. 2017 -03-29.
[21] ( Shanghai Xinfang Intelligent System Company Limited. Method and System for Screening and Intercepting Suspicious Numbers for Fraud Samples: China, CN201611052505.8[P]. 2017-03-29.)
[22] 国家互联网应急中心[EB/OL]. [ 2018- 05- 11] .
[22] ( National Internet Emergency Center [EB/OL]. [ 2018- 05- 11].
[23] 电话邦, 可信号码数据中心. 2017 年度骚扰、诈骗电话形势分析报告[EB/OL]. [2018-04-05]. .
[23] ( Telephone State, Trusted Number Data Center. Harassment, Fraud Telephone Situation Analysis Report in 2017[EB/OL]. [ 2018-04-05]. .)
[24] Apache Jena. Jena 2 Ontology API[OL]. [ 2018- 05- 14]. .
[25] Lozano-Tello A, Gómez-Pérez A . ONTOMETRIC: A Method to Choose the Appropriate Ontology[J]. Journal of Database Management, 2004,15(2):1-18.
[26] Tartir S, Arpinar I B, Moore M, et al. OntoQA: Metric-Based Ontology Quality Analysis [C]// Proceedings of the IEEE Workshop on Knowledge Acquisition from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources. IEEE, 2005.
[1] Lu Jiaying,Yuan Qinjian,Huang Qi,Qian Yunjie. Building Product Domain Ontology with Concept Lattice Theory[J]. 现代图书情报技术, 2016, 32(5): 38-46.
[2] Yan Shiyan, Wang Shengqing, Luo Yunchuan, Huang Haojun. An Ontology Collaborative Construction Model Based on FCA in Cloud Computing Environment[J]. 现代图书情报技术, 2014, 30(3): 49-56.
[3] He Jinjing, Dou Yongxiang. Overview on Construction of Ontology in Social Tagging System[J]. 现代图书情报技术, 2013, (6): 16-22.
[4] Xue Jianwu, Zhao Na, Wang Dongna. The Research on the Refinement of Relationship Between Words in Thesauri and Application Based on Ontology Construction[J]. 现代图书情报技术, 2013, 29(3): 14-20.
[5] Teng Guangqing, Bi Qiang. A Study on Domain Ontology Construction from Heterogeneous Resources Based on Concept Lattice[J]. 现代图书情报技术, 2011, 27(5): 7-12.
[6] Zhang Yunzhong. A New Ontology Construction Method Based on FCA and Folksonomy[J]. 现代图书情报技术, 2011, 27(12): 15-23.
[7] Zeng Xinhong,Lin Weiming,Ming Zhong . Research and Implementation of Consistency Checking Mechanism for OntoThesaurus[J]. 现代图书情报技术, 2008, 24(5): 1-9.
[8] Zhao Dongxia,Zhao Xinli. Study About Government Ontology Construction Based on the E-government Thesauri[J]. 现代图书情报技术, 2008, 24(3): 73-77.
[9] Xia Lixin,Han Yongqing,Zhang Jin. Study About Discipline Knowledge Organization System Construction Based on Ontology[J]. 现代图书情报技术, 2008, 24(12): 80-85.
[10] Liu Chunyan,Chen Shuping,Wu Yucheng . The Transformation from Thesaurus to Ontology Based on SKOS[J]. 现代图书情报技术, 2007, 2(5): 32-35.
[11] Geng Qian,Geng Chong. Concept Extraction in Automatic OntologyConstruction Using Words Cooccurrence[J]. 现代图书情报技术, 2006, 1(2): 43-45.
[12] Nie Hui,Long Zhaohui . Semantic Reasoning Based on Description Logic in Ontology Construction[J]. 现代图书情报技术, 2006, 1(11): 61-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn