Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (1): 38-45    DOI: 10.11925/infotech.2096-3467.2018.1352
Current Issue | Archive | Adv Search |
Extracting Fine-grained Knowledge Units from Texts with Deep Learning
Li Yu1,3,Li Qian1,2(),Changlei Fu1,Huaming Zhao1
1National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2Department of Library, Information and Achieve Management, University of Chinese Academy of Sciences, Beijing 100190, China
3State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China
Download: PDF(2582 KB)   HTML ( 10
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to extract fine-grained knowledge units from texts with a deep learning model based on the modified bootstrapping method. [Methods] First, we built the lexicon for each type of knowledge unit with the help of search engine and keywords from Elsevier. Second, we created a large annotated corpus based on the bootstrapping method. Third, we controlled the quality of annotation with the estimation models of patterns and knowledge units. Finally, we trained the proposed LSTM-CRF model with the annotated corpus, and extracted new knowledge units from texts. [Results] We retrieved four types of knowledge units (study scope, research method, experimental data, as well as evaluation criteria and their values) from 17,756 ACL papers. The average precision was 91%, which was calculated manually. [Limitations] The parameters of models were pre-defined and modified by human. More research is needed to evaluate the performance of this method with texts from other domains. [Conclusions] The proposed model effectively addresses the issue of semantic drifting. It could extract knowledge units precisely, which is an effective solution for the big data acquisition process of intelligence analysis.

Key wordsKnowledge Unit Extraction      Named Entity Recognition      Deep Learning      Bootstrapping      LSTM-CRF     
Received: 02 December 2018      Published: 04 March 2019

Cite this article:

Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning. Data Analysis and Knowledge Discovery, 2019, 3(1): 38-45.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.1352     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I1/38

[1] 高继平, 丁堃, 潘云涛, 等. 知识元研究述评[J]. 情报理论与实践, 2015, 38(7): 134-138.
[1] (Gao Jiping, Ding Kun, Pan Yuntao, et al.A Review of Knowledge Unit Research[J]. Information studies: Theory & Application, 2015, 38(7): 134-138.)
[2] 钱力, 张晓林, 王茜. 基于科技文献的研究设计指纹描述框架研究[J]. 大学图书馆学报, 2015, 33(1): 14-20.
[2] (Qian Li, Zhang Xiaolin, Wang Qian.Research Design Fingerprint Description Framework Based on Scientific Papers[J]. Journal of Academic Libraries, 2015, 33(1): 14-20.)
[3] 刘则渊. 知识图谱的若干问题思考[R]. 大连: 大连理工大学WISE实验室, 2010.
[3] (Liu Zeyuan.Some Thoughts on Knowledge Graph[R]. Dalian: WISE Laboratory of Dalian University of Technology, 2010.)
[4] 祝清松, 冷伏海. 基于引文内容分析的高被引论文主题识别研究[J]. 中国图书馆学报, 2014, 40(1): 39-49.
[4] (Zhu Qingsong, Leng Fuhai.Topic Identification of Highly Cited Papers Based on Citation Content Analysis[J]. Journal of Library Science in China, 2014, 40(1): 39-49.)
[5] 王子璇, 乐小虬, 何远标. 基于WMD语义相似度的TextRank改进算法识别论文核心主题句研究[J]. 数据分析与知识发现, 2017, 1(4): 1-8.
[5] (Wang Zixuan, Le Xiaoqiu, He Yuanbiao.Recognizing Core Topic Sentences with Improved TextRank Algorithm Based on WMD Semantic Similarity[J]. Data Analysis and Knowledge Discovery, 2017, 1(1): 39-49.)
[6] 丁恒, 陆伟. 标准文献知识服务系统设计与实现[J]. 现代图书情报技术, 2016(7-8): 120-128.
[6] (Ding Heng, Lu Wei.Building Standard Literature Knowledge Service System[J]. New Technology of Library and Information Service, 2016(7-8): 120-128.)
[7] Augenstein I, Das M, Riedel S, et al. SemEval2017 Task 10: ScienceIE-Extracting Keyphrases and Relations from Scientific Publications[C]//Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), 2017.
[8] 曾文, 徐硕, 张运良, 等. 科技文献术语的自动抽取技术研究与分析[J]. 现代图书情报技术, 2014(1):51-55.
[8] (Zeng Wen, Xu Shuo, Zhang Yunliang, et al.The Research and Analysis on Automatic Extraction of Science and Technology Literature Terms[J]. New Technology of Library and Information Service, 2014(1): 51-55.)
[9] Gupta S, Manning C D.Analyzing the Dynamics of Research by Extracting Key Aspects of Scientific Papers[C]// Proceedings of the 5th International Joint Conference on Natural Language Processing, 2011.
[10] 郭红梅, 孔贝贝, 张智雄. 基于多重文本关系图中clique子团聚类的主题识别方法研究[J]. 情报学报, 2017,36(5): 433-442.
[10] (Guo Hongmei, Kong Beibei, Zhang Zhixiong.Study on Textual Topic Identification by Clustering Clique Structure in Multi-Relationship Text Graph[J]. Journal of the China Society for Scientific and Technical Information, 2017, 36(5): 433-442.)
[11] 秦晓慧, 乐小虬. 面向单篇文献引文网络的主题来源与走向追踪[J]. 现代图书情报技术, 2015(9): 52-59.
[11] (Qin Xiaohui, Le Xiaoqiu.Topic Sources and Trends Tracking Towards Citation Network of Single Paper[J]. New Technology of Library and Information Service, 2015(9): 52-59.)
[12] Tateisi Y.Annotation of Computer Science Papers for Semantic Relation Extraction[C]//Proceedings of the 9th International Conference on Language Resources and Evaluation (LREC’14), 2014.
[13] Zadeh B Q, Schumann A K.The ACL RD-TEC 2.0: A Language Resource for Evaluating Term Extraction and Entity Recognition Methods[C]//Proceedings of the Language Resources & Evaluation Conference. 2016.
[14] 钱力, 张晓林, 王茜. 科技论文的研究设计指纹自动识别方法构建与实现[J]. 图书情报工作, 2018, 62(2): 135-143.
[14] (Qian Li, Zhang Xiaolin, Wang Qian.Building and Implement on Automatic Identification Method of Research Design Fingerprint of Scientific Papers[J]. Library and Information Service, 2018, 62(2): 135-143.)
[15] 郭少卿, 乐小虬. 科技论文中数值指标实际取值识别[J]. 数据分析与知识发现, 2018, 2(1): 21-28.
[15] (Guo Shaoqing, Le Xiaoqiu.Identifying Actual Value of Numerical Indicator from Scientific Paper[J]. Data Analysis and Knowledge Discovery, 2018, 2(1): 21-28.)
[16] Dan S, Agarwal S, Singh M, et al.Which Techniques does Your Application Use?: An Information Extraction Framework for Scientific Articles[OL]. ArXiv Preprint, arXiv: 1608.06386.
[17] Singh M, Dan S, Agarwal S,et al.App TechMiner: Minging Applications and Techniques from Scientific Articles[C]// Proceedings of the 6th International Workshop on Mining Scientific Publications. 2017: 1-8.
[18] Tsai C T, Kundu G, Roth D.Concept-based Analysis of Scientific Literature[C]//Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. 2013: 1733-1738.
[19] 周雷, 李颖, 石崇德. 面向技术机会发现TOD的专利信息抽取——韩国科学技术信息研究院KISTI语义服务[J]. 情报工程, 2015, 1(2): 31-37.
[19] (Zhou Lei, Li Ying, Shi Chongde.Patent Information Extraction for Technology Opportunity Discovery[J]. Technology Intelligence Engineering, 2015, 1(2): 31-37.)
[20] Tseng H Y, Liao S G, Lu C C, et al.Measuring Efficiencies of Incubation Centers in Taiwan: An Application of Text Mining and Data Envelopment Analysis[J]. Transylvanian Review, 2017, 18: 75.
[21] Lin W, Ji D, Lu Y.Disorder Recognition in Clinical Texts Using Multi-label Structured SVM[J]. BMC Bioinformatics, 2017, 18(1): 75.
[22] 杨娅, 杨志豪, 林鸿飞, 等. MBNER: 面向生物医学领域的多种实体识别系统[J]. 中文信息学报, 2016, 30(1): 170-182.
[22] (Yang Ya, Yang Zhihao, Lin Hongfei.MBNER: Multiple Biomedical Named Entity Recognition System for Biomedical Literature[J]. Journal of Chinese Information Processing, 2016, 30(1): 170-182.)
[23] Okamoto M, Shan Z, Orihara R.Applying Information Extraction for Patent Structure Analysis[C] //Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017: 989-992.
[24] Wagstaff K L, Francis R, Gowda T, et al.Mars Target Encyclopedia: Rock and Soil Composition Extracted from the Literature[C]// Proceedings of the 30th Annual Conference on Innovative Applications of Artificial Intelligence, 2018.
[25] Basaldella M, Antolli E, Serra G,, et al.Bidirectional LSTM Recurrent Neural Network for Keyphrase Extraction[C]// Proceedings of the Italian Research Conference on Digital Libraries, 2018: 180-187.
[26] 朱丹浩, 杨蕾, 王东波. 基于深度学习的中文机构名识别研究——一种汉字级别的循环神经网络方法[J]. 现代图书情报技术, 2016(12): 36-43.
[26] (Zhu Danhao, Yang Lei, Wang Dongbo.Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model[J]. New Technology of Library and Information Service, 2016(12): 36-43.)
[27] Rei M, Crichton G, Pyysalo S.Attending to Characters in Neural Sequence Labeling Models[C]//Proceedings of the 26th International Conference on Computational Linguistics (COLING-2016), 2016.
[1] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[2] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[3] Jingjing Pei,Xiaoqiu Le. Identifying Coordinate Text Blocks in Discourses[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[4] Changlei Fu,Li Qian,Huaping Zhang,Huaming Zhao,Jing Xie. Mining Innovative Topics Based on Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[5] Bengong Yu,Peihang Zhang,Qingtang Xu. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[6] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[7] Wei Lu,Mengqi Luo,Heng Ding,Xin Li. Image Annotation Tags by Deep Learning and Real Users: A Comparative Study[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[8] Guoming Feng,Xiaodong Zhang,Suhui Liu. DBLC Model for Word Segmentation Based on Autonomous Learning[J]. 数据分析与知识发现, 2018, 2(5): 40-47.
[9] Xinyue Fan,Lei Cui. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[10] Guoming Feng,Xiaodong Zhang,Suhui Liu. Classifying Chinese Texts with CapsNet[J]. 数据分析与知识发现, 2018, 2(12): 68-76.
[11] Yanhui Xiao,Xin Wang,Wen’gang Feng,Huawei Tian,Shaozhong Wu,Lihua Li. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[12] Wengang Feng,Jing Huang. Early Warning for Civil Aviation Security Checks Based on Deep Learning[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[13] Jiaheng Hu,Yonghua Cen,Chengyao Wu. Constructing Sentiment Dictionary with Deep Learning: Case Study of Financial Data[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[14] Sanhong Deng,Yuyangzi Fu,Hao Wang. Multi-Label Classification of Chinese Books with LSTM Model[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[15] Danhao Zhu, Lei Yang, Dongbo Wang. Recognizing Chinese Organization Names Based on Deep Learning: A Recurrent Network Model[J]. 数据分析与知识发现, 2016, 32(12): 36-43.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn