Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (1): 15-26    DOI: 10.11925/infotech.2096-3467.2018.1354
Current Issue | Archive | Adv Search |
Building Knowledge Graph with Sci-Tech Big Data
Ying Wang1(),Li Qian1,2,Jing Xie1,2,Zhijun Chang1,2,Beibei Kong1
1National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2Department of Library, Information and Archives Management, University of Chinese Academy of Sciences, Beijing 100190, China
Download: PDF(3962 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to extract information from Sci-Tech big data and build an academic knowledge network, aiming to develop smart knowledge services. [Methods] We proposed an Ontology schema and a framework to contruct knowledge graph based on the distributed storage and high-performance computing of big data platform. The proposed model helped us extract and align research entities for relationship discovery. We also adopted the knowledge merging and enrichment, semantic storage and quality management techniques. [Results] We created a huge knowledge graph including more than 300 million entities and 1.1 billion relations. It also supported knowledge discovery platform and smart personal research assistant apps for scientific big data. [Limitations] More research is needed to improve the quality management of knowledge graph, as well as the precision of entity alignment. [Conclusions] The proposed method improve the knowledge management of scientific and technology big data.

Key wordsSci-Tech Big Data      Knowledge Graph      Ontology      Knowledge Extraction     
Received: 03 December 2018      Published: 04 March 2019

Cite this article:

Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data. Data Analysis and Knowledge Discovery, 2019, 3(1): 15-26.

URL:     OR

[1] Singhal A. Introducing the Knowledge Graph: Things, Not Strings[EB/OL]. [2013-04-10]. .
[2] Wu W, Li H, Wang H, et al.Probase: A Probabilistic Taxonomy for Text Understanding[C]// Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2012: 481-492.
[3] Baidu Open Knowledge Graph[EB/OL]. [2018-08-16]..
[4] 张阔. 从搜索信息到搜索知识——技术架构[EB/OL]. [2013-03-26]. .
[4] (Zhang Kuo. From Information Search to Knowledge Search — Technology Infrastructure[EB/OL]. [2013-03-26].
[5] 王元卓, 贾岩涛, 赵泽亚, 等. OpenKN-网络大数据时代的知识计算引擎[J]. 中国计算机学会通讯, 2014, 10(11): 30-35.
[5] (Wang Yuanzhuo, Jia Yantao, Zhao Zeya, et al.OpenKG-Knowledge Computing Engine in the Era of Network Big Data[J]. Communications of the Chinese Computer Federation, 2014, 10(11): 30-35.)
[6] Zhu J G, Wang H F, Shen B J. Software. Zhishi.Schema: A Software Programming Taxonomy Derived from Stackoverflow[C]// Proceedings of the 14th International Semantic Web Conference (ISWC 2015), Bethlehem, Pennsylvania, USA. 2015: 1-4.
[7] Introduction to CN-Probase [EB/OL]. [2017-11-29]. .
[8] 国务院. 新一代人工智能发展规划[R]. [2017-07-08]. 新一代人工智能发展规划[R]. [2017-07-08]. .
[8] (State Council.New Generation Artificial Intelligence Development Plan[R]. [2017-07-08]. New Generation Artificial Intelligence Development Plan[R]. [2017-07-08].
[9] 钱力, 谢靖, 常志军, 等. 基于科技大数据的智能知识服务体系研究设计[J]. 数据分析与知识发现. DOI: 10.11925/infotech.2096-3467.2018.1364.
[9] (Qian Li, Xie Jing, Chang Zhijun, et al.Designing Smart Knowledge Services with Sci-Tech Big Data[J]. Data Analysis and Knowledge Discovery. DOI: 10.11925/infotech.2096-3467. 2018.1364.)
[10] Springer Nature.SN SciGraph [EB/OL]. [2018-08-18]..
[11] Allen B P.The Roll of Metadata in the Second Machine Age [EB/OL]. [2017-02-02]..
[12] Taylor & [EB/OL].[2018-05-05]. .
[13] Tang J, Zhang J, Yao L M, et al.AMiner: Extraction and Mining of Academic Social Networks[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’2008). Las Vegas, Nevada, USA. New York, ACM, 2008:990-998.
[14] Acemap Knowledge Graph[EB/OL]. [2018-05-05]..
[15] 国家科技文献中心. NSTL统一文献元数据标准3.0[EB/OL]. [2017-10-18]. .
[15] (National Science and Technology Library. Unified MetaData Standard for Scientific Literature Version3.0 [EB/OL]. [2017-10-18].
[1] Beibei Kong,Jing Xie,Li Qian,Zhijun Chang,Zhenxin Wu. Methodology and Tools to Enrich Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(7): 113-122.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[4] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[5] Hongxia Xu,Chunwang Li. Review of Knowledge Extraction of Scientific Literature[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[6] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[7] Li Qian,Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang. Designing Smart Knowledge Services with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 4-14.
[8] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[9] Youshi He,Shufang He. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[10] Huihui Tang,Hao Wang,Zixuan Zhang,Xueying Wang. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[11] Beibei Pang,Juanqiong Gou,Wenxin Mu. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[12] Shengchun Ding,Menglu Liu,Zhu Fu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[13] Zhihong Shen,Chang Yao,Yanfei Hou,Linhuan Wu,Yuepeng Li. Big Linked Data Management: Challenges, Solutions and Practices[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[14] Haili Tu,Xiaobo Tang. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[15] Erjing Chen,Enbo Jiang. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938