Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (1): 55-62    DOI: 10.11925/infotech.2096-3467.2018.1357
Current Issue | Archive | Adv Search |
Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph
Jiying Hu1,Jing Xie1,2(),Li Qian1,2,Changlei Fu1
1National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2Department of Library, Information and Archives Management, University of Chinese Academy of Sciences, Beijing 100190, China
Download: PDF(2162 KB)   HTML ( 20
Export: BibTeX | EndNote (RIS)      

[Objective] This paper tries to create a big data platform for sci-tech knowledge discovery, aiming to transform the keyword-based literature retrieval to knowledge retrieval. [Methods] First, we extracted and annotated scientific research entities and calculated their relationship with data mining techniques. Then, we created distributed indexes based on entity knowledge graph, which achieved multi-dimensional knowledge retrieval and correlated navigation. [Results] This study generated knowledge graphs for 10 research entities, such as papers, projects, scholars and institutions, etc. The proposed platform could conduct intelligent semantic search and multi-dimensional knowledge discovery with these knowledge graphs. [Limitations] Our study is at the entity level, and more research is needed for the semantic retrieval. [Conclusions] The proposed platform organizes data at the knowledge level, which meets user’s precise knowledge retrieval demands and improves user experience.

Key wordsKnowledge Discovery      S&T Big Data      Knowledge Graph      Precision Service      User Portrait     
Received: 03 December 2018      Published: 04 March 2019

Cite this article:

Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph. Data Analysis and Knowledge Discovery, 2019, 3(1): 55-62.

URL:     OR

[1] Google Inside Search [EB/OL]. [2016-02-10]..
[2] WolframAlpha. Computational Knowledge Engine [EB/OL].[2015-03-10]. .
[3] Springer Nature.SN SciGraph[EB/OL].[2018-08-18]..
[4] Taylor & [EB/OL].[2018-05-05]. .
[5] Tang J, Zhang J, Yao L M, et al.AMiner: Extraction and Mining of Academic Social Networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (SIGKDD’2008). 2008: 990-998.
[6] Kuc R, Rogozinski M.Elasticsearch Server[M]. Birmingham: Packt Publishing Ltd., 2013.
[7] 王颖, 张智雄, 李传席, 等. 科技知识组织体系开放引擎系统的设计与实现[J]. 现代图书情报技术, 2015 (10): 95-101.
[7] (Wang Ying, Zhang Zhixiong, Li Chuanxi, et al.The Design and Implementation of Open Engine System for Scientific & Technological Knowledge Organization Systems[J]. New Technology of Library and Information Service, 2015(10): 95-101.)
[8] 孙坦, 刘峥. 面向外文科技文献信息的知识组织体系建设思路[J]. 图书与情报, 2013 (1): 2-7.
[8] (Sun Tan, Liu Zheng.Methodology Framework of Knowledge Organization System for Scientific & Technological Literature[J]. Library & Information, 2013(1): 2-7.)
[9] 李跃鹏, 金翠, 及俊川. 基于Word2vec 的关键词提取算法[J]. 科研信息化技术与应用, 2015(4): 54-59.
[9] (Li Yuepeng, Jin Cui, Ji Junchuan.A Keyword Extraction Algorithm Based on Word2vec[J]. E-science Technology & Application, 2015(4): 54-59.)
[10] 余珊珊, 苏锦细, 李鹏飞. 基于改进的TextRank的自动摘要提取方法[J]. 计算机科学, 2016, 43(6): 240-247.
[10] (Yu Shanshan, Su Jinxi, Li Pengfei.Improved TextRank-based Method for Automatic Summarization[J]. Computer Science, 2016, 43(6): 240-247.)
[11] 顾益军, 夏天. 融合LDA 与TextRank 的关键词抽取研究[J]. 现代图书情报技术, 2014(7-8): 41-47.
[11] (Gu Yijun, Xia Tian.Study on Keyword Extraction with LDA and TextRank Combination[J]. New Technology of Library and Information Service, 2014(7-8): 41-47.)
[1] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[3] Juhua Wu,Yu Wang,Ming Li,Shaoyun Cai. Knowledge Discovery of Online Health Communities with Weighted Knowledge Network[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[4] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[5] Datian Bi,Fu Wang,Pengcheng Xu. Analyzing Mobile Library Users and Recommending Services with VSM[J]. 数据分析与知识发现, 2018, 2(9): 100-108.
[6] Xin Wang,Wen’gang Feng. Review of Techniques Detecting Online Extremism and Radicalization[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[7] Zhiqiang Zhang,Shaoping Fan,Xiujuan Chen. Biomedical Informatics Studies for Knowledge Discovery in Precision Medicine[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
[8] Dongmei Mu,Ping Wang,Danning Zhao. Reducing Data Dimension of Electronic Medical Records: An Empirical Study[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[9] Zhihong Shen,Chang Yao,Yanfei Hou,Linhuan Wu,Yuepeng Li. Big Linked Data Management: Challenges, Solutions and Practices[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[10] Ying Jiang,Jing Zhang,Lingxuan Zhu. Extracting and Visualizing Knowledge Graph Schema from Linked Data with Cytoscape Platform[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[11] Xiufang Xie,Xiaolin Zhang. Integrated Analysis and Visualization of Sci-Tech Roadmaps: Case Study of Renewable Energy[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[12] Mu Dongmei,Ren Ke. Discovering Knowledge from Electronic Medical Records with Three Data Mining Algorithms[J]. 现代图书情报技术, 2016, 32(6): 102-109.
[13] Liu Hongxu,Qu Jiansheng. Using Meta-analysis Software for Domain Knowledge Discovery[J]. 现代图书情报技术, 2016, 32(5): 9-21.
[14] Ku Liping. Research on Article-Level Metrics (ALMs): A Case Analysis[J]. 现代图书情报技术, 2013, 29(11): 1-7.
[15] Song Wen, Huang Jinxia, Liu Yi, Tang Yijie. SKE Key Technologies and Services for Knowledge Discovery[J]. 现代图书情报技术, 2012, 28(7): 13-18.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938