Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (1): 4-14    DOI: 10.11925/infotech.2096-3467.2018.1364
Current Issue | Archive | Adv Search |
Designing Smart Knowledge Services with Sci-Tech Big Data
Li Qian(),Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang
National Science Library, Chinese Academy Sciences, Beijing 100190, China
Department of Library, Information and Archives Management, University of Chinese Academy of Sciences, Beijing 100190, China
Download: PDF(4070 KB)   HTML ( 7
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper investigates the issues facing scientific and technology knowledge services. It tries to design smart knowledge service based on big data, which provides semantic retrieval, precision information push, collective intelligence and intelligent analysis services. [Methods] The proposed system was driven by “data and scene”. It used the technology of natural language processing and artificial intelligence to build Knowledge Graph, Precision Service and Intelligent Informatics. It also supported the development of new generation smart knowledge service platforms. [Results] We successfully built a Science and Technology Big Data Center, which helped us develop a knowledge discovery platform. We also created an intelligent research assistant, launched an academic evaluation system for scientific and technological institutions, and constructed a panoramic observation platform for scientific and technological big data visualization. [Limitations] The knowledge graph and the precision service needs to be further improved. [Conclusions] The Smart Knowledge Service platforms provide analysis tools for scientific and technological intelligence.

Key wordsSci-Tech Big Data      Intelligent Knowledge Services      Big Data Computing      Active Service Model      Open Science     
Received: 04 December 2018      Published: 04 March 2019

Cite this article:

Li Qian,Jing Xie,Zhijun Chang,Zhenxin Wu,Dongrong Zhang. Designing Smart Knowledge Services with Sci-Tech Big Data. Data Analysis and Knowledge Discovery, 2019, 3(1): 4-14.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2018.1364     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I1/4

[1] 张晓林. 走向知识服务: 寻找新世纪图书情报工作的生长点[J]. 中国图书馆学报, 2000, 26(5): 32-37.
[1] (Zhang Xiaolin.Towards Knowledge Services: Seeking Development Opportunities for Library and Information Services[J]. Journal of Library Science in China, 2000, 26(5): 32-37.)
[2] 钱力, 张晓林, 王茜. 基于科技文献的研究设计指纹描述框架研究[J]. 大学图书馆学报, 2015, 33(1): 14-20.
[2] (Qian Li, Zhang Xiaolin, Wang Qian.Research Design Fingerprint Description Framework Based on Scientific Papers[J]. Journal of Academic Libraries, 2015, 33(1): 14-20.)
[3] 李广建, 江信昱. 论计算型情报分析[J]. 中国图书馆学报, 2018, 44(2): 4-16.
[3] (Li Guangjian, Jiang Xinyu.On Computational Information Analysis[J]. Journal of Library Science in China, 2018, 44(2): 4-16.)
[4] Intelligence for Everyone[EB/OL].[2018-09-20]..
[5] Semantic Scholar - An Academic Search Engine for Scientific Articles [EB/OL]. [2018-09-20]..
[6] Digital Science [EB/OL]. [2018-09-20]..
[7] Research Intelligence[EB/OL]. [2018-09-20]..
[8] NSTL国家科技图书文献中心[EB/OL].[2018-09-20]. .
[8] (National Science and Technology Library Retrieval Platform[EB/OL]. [2018-09-20].
[9] 王世伟. 人工智能与图书馆的服务重塑[J]. 图书与情报, 2017(6): 6-18.
[9] (Wang Shiwei.Artificial Intelligence and Library Service Reshaping[J]. Library & Information, 2017(6): 6-18.)
[10] 柳益君, 李仁璞, 罗烨, 等. 人工智能+图书馆知识服务的实现路径和创新模式[J]. 图书馆学研究, 2018(10): 61-65.
[10] (Liu Yijun, Li Renpu, Luo Ye, et al.The Implementation Path and Innovation Mode of the Knowledge Service of Artificial Intelligence + Library[J]. Research on Library Science, 2018(10): 61-65.)
[11] 李景龙, 王锦, 黄浩, 等. 简析科技大数据服务平台系统架构与运作模式[J]. 发明与创新, 2018(5): 40-42.
[11] (Li Jinglong, Wang Jin, Huang Hao, et al.Analysis of System Achitecture and Operation Mode of Science and Technology Big Data Platform[J]. Invention and Innovation, 2018(5): 40-42.)
[12] 张晓林. 颠覆性变革与后图书馆时代-推动知识服务的供给侧结构性改革[J]. 中国图书馆学报, 2018, 44(1): 4-16.
[12] (Zhang Xiaolin.Disruptive Changes and the Post-Library Era: Toward Supply-side Structure Reform of Knowledge Services[J]. Journal of Library Science in China, 2018, 44(1): 4-16.)
[13] 余彩霞. 面向知识服务的数字资源供求矛盾的成因解析[J]. 人力资源管理, 2018(4): 408-409.
[13] (Yu Caixia.Analysis of the Causes of Contradiction Between Supply and Demand of Digital Resources for Knowledge Services[J]. Human Resource Management, 2018(4): 408-409.)
[14] 2017微信用户&生态研究报告[EB/OL]. [2019-01-05]..
[14] (2017 WeChat Users & Ecological Research Report [EB/OL]. [2019-01-05]..)
[15] 黎霞. 浅谈广西建设科技大数据平台对辅助科技管理的重要意义[J]. 大众科技, 2018, 20(8): 144-146.
[15] (Li Xia.Discussion on the Important Significances of the Construction of Big Data Platform Generated by Guanxi on Assisting Technology Management[J]. Popular Science & Technology, 2018, 20(8): 144-146.)
[16] 习近平作十九大报告八次提到互联网[EB/OL]. [2018- 09-20]. .
[16] (Xi Jinping Mentioned the Internet for Eight Times in His Report of the Nineteenth National Report [EB/OL]. [2018-09-20].
[17] Defense Science Board.Technology and Innovation Enablers for Superiority in 2030[R]. Washtington, D.C., 2013.
[18] National Security Strategy of the United States of America[EB/OL].[2018-09-20]..
[19] 王晶金, 李盛林, 梁亚坤. 新政策下科技成果转移转化问题与对策研究[J]. 科技进步与对策, 2018, 14(35): 102-107.
[19] (Wang Jingjin, Li Shenglin, Liang Yakun.Problems in Transformation of Science and Technology Achievements under New Policies and Its Countermeasures[J]. Science & Technology Progress and Policy, 2018, 14(35): 102-107.)
[20] 陈威如, 余卓轩. 平台战略:正在席卷全球的商业模式革命[M]. 北京: 中信出版社, 2013.
[20] (Chen Weiru, Yu Zhuoxuan.Platform Strategy: Business Model Revolusion[M]. Beijing: CITIC Press, 2013.)
[21] 国务院关于印发新一代人工智能发展规划的通知[EB/OL]. [2018-09-20]. .
[21] (The Notice About New Generation of Artificial Intelligence Development Plan issued by the State Council)[EB/OL]. [2018-09-20].
[22] Björk B C.Scholarly Journal Publishing in Transition-From Restricted to Open Access[J]. Electron Markets, 2017, 2(27): 101-109.
[23] 大数据时代的新科学范式: 数据密集型科学[EB/OL]. [2018-09-20]..
[23] (The Fourth Paradigm: Data-Intensive Scientific Discovery[EB/OL]. [2018-09-20]..)
[1] Beibei Kong,Jing Xie,Li Qian,Zhijun Chang,Zhenxin Wu. Methodology and Tools to Enrich Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(7): 113-122.
[2] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[3] Heinz Pampel, Paul Vierkant, Frank Scholze, Roland Bertelmann, Maxi Kindling, Jens Klump, Hans-Jürgen Goebelbecker, Jens Gundlach, Peter Schirmbacher, Uwe Dierolf . Making Research Data Repositories Visible:The re3data.org Registry[J]. 现代图书情报技术, 2014, 30(3): 26-34.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn