Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (9): 68-76    DOI: 10.11925/infotech.2096-3467.2019.0135
Current Issue | Archive | Adv Search |
Automatic Classification of Ancient Classics with Entity Features
Heran Qin1,Liu Liu1,2,Bin Li3,Dongbo Wang1,2()
1 College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
2 Research Center for Correlation of Domain Knowledge, Nanjing Agricultural University, Nanjing 210095, China
3 College of Literature, Nanjing Normal University, Nanjing 210097, China
Download: PDF(554 KB)   HTML ( 5
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper modifies the algorithm of traditional statistical feature words with entity features, aiming to classify ten classics from ancient China. [Methods] For the support vector machine model, we added the traditional TF-IDF, information gain, chi-square test and mutual information to calculate the feature words. Then, we used the named entity to evaluate the classification results. [Results] The highest accuracy of the proposed classifier reached 98.7%. The accuracy was improved by 12.4%, 12.4%, 12.3% and 22.8% respectively with traditional information gain, TF-IDF, mutual information and chi-square test feature calculations. [Limitations] We need to re-label the recognition entities before applying entity features to other texts. [Conclusions] Entity features could improve the effectiveness of text categorization models.

Key wordsAncient Classics      Text Classification      Entity      Support Vector Machine     
Received: 30 January 2019      Published: 23 October 2019
:  G252  

Cite this article:

Heran Qin,Liu Liu,Bin Li,Dongbo Wang. Automatic Classification of Ancient Classics with Entity Features. Data Analysis and Knowledge Discovery, 2019, 3(9): 68-76.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2019.0135     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I9/68

互信息 互信息+命名实体 卡方检验 卡方检验+命名实体 TF-IDF TF-IDF+命名实体 信息增益 信息增益+命名实体
君子0.21 管子0.46 墨子6.05e-169 孟子2.79e-115 天下0.08 天下0.73 不可0.45 君子0.64
墨子0.19 子墨子0.42 孟子8.45e-223 子墨子3.05e-109 故曰0.04 諸侯0.23 君子0.41 諸侯0.60
孟子0.18 桓公0.36 管子1.33e-236 管子1.12e-224 君子0.04 君子0.18 不能0.40 桓公0.56
孔子0.16 君子0.30 天下7.08e-184 君子1.94e-177 不可0.03 桓公0.18 所以0.40 天下0.54
天下0.13 孔子0.27 戰者7.80e-183 孙子2.99e-170 諸侯0.03 聖人0.18 可以0.38 聖人0.54
夫子0.12 孟子0.26 君子8.15e-178 桓公1.71e-154 墨子0.02 墨子0.12 天下0.37 孔子0.51
夫是0.12 天下0.24 子路9.63e-119 子路1.50e-126 不能0.02 管子0.11 不知0.36 故曰0.34
No. Text Label
41 則 魚 亂 於 水 矣; 削格 羅落... 庄子
28 則 以 往 知 來, ... 墨子
97 五十 步 丈夫 十 人, 丁女 二十... 墨子
92 故 先 王 曰 道。管仲 有 病... 管子
36 而 道 法 萬 全, 智 能 多 失... 韩非子
词性标记 是否为实体
y N
v N
漢文帝 nr Y
n N
v N
p N
v N
方法 特征维度 准确率
信息增益 100 58.6%
500 74.4%
1 000 86.3%
1 500 81.9%
2 000 84.9%
TF-IDF 100 65.6%
500 74.9%
1 000 85.9%
1 500 85.3%
2 000 83.4%
互信息 100 72.5%
500 77.9%
1 000 80.9%
1 500 85.1%
2 000 83.8%
卡方检验 100 73.5%
500 72.1%
1000 72.9%
1500 70.3%
2000 75.0%
方法 特征维度 准确率
信息增益+命名实体 100 93.4%
500 97.8%
1 000 98.7%
1 500 98.7%
2000 97.8%
TF-IDF+命名实体 100 90.8%
500 98.3%
1 000 96.5%
1 500 98.3%
2 000 96.9%
互信息+命名实体 100 91.3%
500 96.9%
1 000 96.9%
1 500 97.4%
2 000 98.3%
卡方检验+命名实体 100 89.5%
500 95.6%
1 000 96.9%
1 500 97.8%
2 000 96.9%
[1] Stein R A, Jaques P A, Valiati J F . An Analysis of Hierarchical Text Classification Using Word Embeddings[J]. Information Sciences, 2019,471:216-232.
[2] Dashtipour K, Gogate M, Adeel A, et al. A Comparative Study of Persian Sentiment Analysis Based on Different Feature Combinations [C]// Proceedings of the 2017 International Conference on Communications, Signal Processing, and Systems. 2017: 2288-2294.
[3] D’Andrea E, Ducange P, Bechini A , et al. Monitoring the Public Opinion About the Vaccination Topic from Tweets Analysis[J]. Expert Systems with Applications, 2019,116:209-226.
[4] Dong L, Ji S, Zhang C , et al. An Unsupervised Topic-Sentiment Joint Probabilistic Model for Detecting Deceptive Reviews[J]. Expert Systems with Applications, 2018,114:210-223.
[5] Tocoglu M A, Alpkocak A . TREMO: A Dataset for Emotion Analysis in Turkish[J]. Journal of Information Science, 2018,44(6):848-860.
[6] Manek A S, Shenoy P D, Mohan M C , et al. Aspect Term Extraction for Sentiment Analysis in Large Movie Reviews Using Gini Index Feature Selection Method and SVM Classifier[J]. World Wide Web, 2017,20(2):135-154.
[7] Liu Y, Bi J W, Fan Z P . A Method for Multi-Class Sentiment Classification Based on an Improved One-vs-One (OVO) Strategy and the Support Vector Machine (SVM) Algorithm[J]. Information Sciences, 2017, 394-395:38-52.
[8] 段江丽 . 基于SVM的文本分类系统中特征选择与权重计算算法的研究[D]. 太原: 太原理工大学, 2011.
[8] ( Duan Jiangli . Research on Feature Selection and Weighting Algorithm in Text Classification System Based on SVM[D]. Taiyuan: Taiyuan University of Technology, 2011.)
[9] 都云琪 . 中文文本自动分类的研究与实现[D]. 西安: 西安电子科技大学, 2012.
[9] ( Du Yunqi . The Research and Implementation of Chinese Text Classification[D]. Xi’an: Xi’an University of Electronic Science and Technology, 2012.)
[10] 李玉雄 . 非凸在线支持向量机的研究与应用[D]. 北京: 北京工业大学, 2013.
[10] ( Li Yuxiong . Research and Application of Non-convex Online Support Vector Machines[D]. Beijing: Beijing University of Technology, 2013.)
[11] 王昊, 叶鹏, 邓三鸿 . 机器学习在中文期刊论文自动分类研究中的应用[J]. 现代图书情报技术, 2014(3):80-87.
[11] ( Wang Hao, Ye Peng, Deng Sanhong . The Application of Machine-Learning in the Research on Automatic Categorization of Chinese Periodical Articles[J]. New Technology of Library and Information Service, 2014(3):80-87.)
[12] 董帅 . 基于半监督学习的文本分类算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
[12] ( Dong Shuai . Research on the Text Classification Based on the Semi-supervised Learning[D]. Harbin: Harbin Engineering University, 2014.)
[13] 王宗尧, 刘金岭 . 基于支持向量机的PU中文文本分类器构建[J]. 南京邮电大学学报: 自然科学版, 2015,35(6):100-105.
[13] ( Wang Zongyao, Liu Jinling . PU Chinese Text Classifier Based on Support Vector Machine Construction[J]. Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 2015,35(6):100-105.)
[14] 郭东峰, 王东起 . 机器学习中文本分类处理研究[J]. 内江科技, 2016(9):115-116.
[14] ( Guo Dongfeng, Wang Dongqi . Research on Text Classification and Processing in Machine Learning[J]. Neijiang Science and Technology, 2016(9):115-116.)
[15] 谭建平 . 基于半监督的SVM迁移学习文本分类方法[D]. 广州: 广东工业大学, 2016.
[15] ( Tan Jianping . Semi-supervised SVM-Based Transfer Learning for Text Classification[D]. Guangzhou: Guangdong University of Technology, 2016.)
[16] 陶林润德 . 机器学习方法在文本分类中的应用[J]. 中国战略新兴产业, 2017(40):134-135.
[16] ( Tao Linrunde . Application of Machine Learning Method in Text Classification[J]. China Strategic Emerging Industries, 2017(40):134-135.)
[17] 薛峰, 胡越, 夏帅 , 等. 基于论文标题和摘要的短文本分类研究[J]. 合肥工业大学学报: 自然科学版, 2018,41(10):1343-1349.
[17] ( Xue Feng, Hu Yue, Xia Shuai , et al. Research on Short Text Classification Based on Paper Title and Abstract[J]. Journal of Hefei University of Technology: Natural Science, 2018,41(10):1343-1349.)
[18] 施瑞朗 . 基于社交平台数据的文本分类算法研究[J]. 电子科技, 2018,31(10):69-70, 75.
[18] ( Shi Ruilang . Text Categorization Algorithm Based on Social Platform Data[J]. Electronic Science and Technology, 2018,31(10):69-70, 75.)
[19] 刘测, 韩家新 . 面向新闻文本的分类方法的比较研究[J]. 智能计算机与应用, 2018,8(5):38-41.
[19] ( Liu Ce, Han Jiaxin . A Comparative Study of Classification Methods for News Texts[J]. Intelligent Computer and Applications, 2018,8(5):38-41.)
[1] Weimin Nie,Yongzhou Chen,Jing Ma. A Text Vector Representation Model Merging Multi-Granularity Information[J]. 数据分析与知识发现, 2019, 3(9): 45-52.
[2] Yunfei Shao,Dongsu Liu. Classifying Short-texts with Class Feature Extension[J]. 数据分析与知识发现, 2019, 3(9): 60-67.
[3] Ruojia Wang,Lu Zhang,Jimin Wang. Automatic Triage of Online Doctor Services Based on Machine Learning[J]. 数据分析与知识发现, 2019, 3(9): 88-97.
[4] Guo Chen,Tianxiang Xu. Sentence Function Recognition Based on Active Learning[J]. 数据分析与知识发现, 2019, 3(8): 53-61.
[5] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[6] Qingtian Zeng,Mingdi Dai,Chao Li,Hua Duan,Zhongying Zhao. Discovering Important Locations with User Representation and Trace Data[J]. 数据分析与知识发现, 2019, 3(6): 75-82.
[7] Cheng Zhou,Hongqin Wei. Evaluating and Classifying Patent Values Based on Self-Organizing Maps and Support Vector Machine[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[8] Guangshang Gao. Reviewing Basic Methods of Entity Resolution[J]. 数据分析与知识发现, 2019, 3(5): 27-40.
[9] Bengong Yu,Yangnan Chen,Ying Yang. Classifying Short Text Complaints with nBD-SVM Model[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[10] Shengchun Ding,Linlin Hou,Ying Wang. Product Knowledge Map Construction Based on the E-commerce Data[J]. 数据分析与知识发现, 2019, 3(3): 45-56.
[11] Yue Yuan,Dongbo Wang,Shuiqing Huang,Bin Li. The Comparative Study of Different Tagging Sets on Entity Extraction of Classical Books[J]. 数据分析与知识发现, 2019, 3(3): 57-65.
[12] Li Yu,Li Qian,Changlei Fu,Huaming Zhao. Extracting Fine-grained Knowledge Units from Texts with Deep Learning[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[13] Zixuan Zhang,Hao Wang,Liping Zhu,Sanhong eng. Identifying Risks of HS Codes by China Customs[J]. 数据分析与知识发现, 2019, 3(1): 72-84.
[14] Xinlei Li,Hao Wang,Xiaomin Liu,Sanhong Deng. Comparing Text Vector Generators for Weibo Short Text Classification[J]. 数据分析与知识发现, 2018, 2(8): 41-50.
[15] Dongmei Mu,Shan Jin,Yuanhong Ju. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn