Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (11): 43-51    DOI: 10.11925/infotech.2096-3467.2019.0370
Current Issue | Archive | Adv Search |
Personalized Recommendation Based on Predictive Analysis of User’s Interests
Hao Ding,Shuqing Li()
School of Information Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
Download: PDF(935 KB)   HTML ( 12
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to construct a time series prediction model based on the fluctuation of users’ historical interests, aiming to improve the recommendation results. [Methods] We added time attenuation factor to the ratings by each type of users and linearly fit the data fluctuation with neural network. Then, we chose the optimal parameters to compare the effectiveness of the proposed method. [Results] We conducted five rounds of user simulation tests and found the MAE and RMSE errors of the proposed method were reduced by 47.63% and 44.61%. [Limitations] Analysis of time fluctuation relies on users’ historical data, thus, additional cold-start algorithm is needed to preprocess the data. [Conclusions] The proposed method could effectively analyze and predict the changing of interests in different commodities, and provide more accurate recommendation lists.

Key wordsTime Series      Interest Type      Fluctuation Analysis      Personalized Recommendation     
Received: 08 April 2019      Published: 18 December 2019
ZTFLH:  TP391  
Corresponding Authors: Shuqing Li     E-mail: leeshuqing@163.com

Cite this article:

Hao Ding,Shuqing Li. Personalized Recommendation Based on Predictive Analysis of User’s Interests. Data Analysis and Knowledge Discovery, 2019, 3(11): 43-51.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2019.0370     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I11/43

用户数量 电影数量 评分数量 稀疏度(%)
138 493 27 278 20 000 263 0.5294
Genre\Set Set#1 Set#2 Set#3 Set#4 Set#5 Total
Train Test Train Test Train Test Train Test Train Test Train Test
Action 31 344 11 022 30 990 11 147 27 434 9 686 30 954 10 891 30 661 10 924 151 383 53 670
Adventure 24 134 8 561 24 306 8 679 21 295 7 528 23 980 8 611 24 704 8 763 118 419 42 142
Animation 5 576 2 559 5 661 2 533 5 206 2 275 5 707 2 520 6 046 2 722 28 196 12 609
Children 9 317 2 945 9 180 2 988 8 220 2 602 8 907 2 819 10 115 3 122 45 739 14 476
Comedy 42 591 14 162 42 343 13 892 37 222 12 000 40 770 13 269 44 719 14 557 207 645 67 880
Crime 18 343 6 071 18 627 6 178 16 251 5 478 17 945 5 953 18 248 6 207 89 414 29 887
Documentary 906 800 897 799 760 750 875 786 941 848 4 379 3 983
Drama 48 023 16 793 49 602 17 172 42 774 15 218 47 443 16 580 49 783 17 723 237 625 83 486
Fantasy 11 197 4 472 11 210 4 498 9 873 3 881 10 979 4 357 11 578 4 562 54 837 21 770
Film-Noir 1 274 276 1 223 324 1 063 276 1 278 306 1 324 316 6 162 1 498
Horror 9 156 3 095 7 674 2 619 7 544 2 552 7 678 2 655 8 451 2 707 40 503 13 628
IMAX 2 175 1 424 2 276 1 485 1 825 1 268 2 130 1 374 2 391 1 491 10 797 7 042
Musical 4 828 1 560 5 025 1 609 4 298 1 443 4 814 1 440 5 256 1 710 24 221 7 762
Mystery 8 895 2 961 8 707 2 929 7 734 2 624 8 494 2 827 8 817 2 966 42 647 14 307
Romance 21 445 6 704 22 305 7 008 18 970 5 936 21 486 6 452 23 009 7 135 107 215 33 235
Sci-Fi 18 223 6 129 17 597 5 988 15 823 5 342 17 444 6 001 17 545 5 949 86 632 29 409
Thriller 30 174 10 228 29 597 10 126 26 384 9 126 28 868 9 893 29 582 10 154 144 605 49 527
War 5 959 1 732 6 025 1 836 5 119 1 520 6 049 1 816 6 251 1 855 29 403 8 759
Western 2 608 893 2 357 805 2 085 693 2 360 798 2 399 870 11 809 4 059
Total 296 168 102 387 295 602 102 615 259 880 90 198 288 161 99 348 301 820 104 581 1 441 631 499 129
评估方法 运行时间(s) 响应时间(s)
NormalPredictor 0.15 0.18
KNNBasic 0.50 2.79
SVD++ 558.98 9.81
NMF 7.04 0.19
TGE-CF 1.15 0.15
[1] Goldberg D, Nichols D, Oki B M , et al. Using Collaborative Filtering to Weave an Information Tapestry[J]. Communications of the ACM, 1992,35(12):61-71.
[2] Ma H, King I, Lyu M R . Learning to Recommend with Social Trust Ensemble [C]// Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2009: 203-210.
[3] Konstas I, Stathopoulos V, Jose J M . On Social Networks and Collaborative Recommendation [C]// Proceedings of the 32nd International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2009: 195-202.
[4] Liu Z, Tan K, Wang X Q , et al. A Learning Framework for Temporal Recommendation Without Explicit Iterative Optimization[J]. Applied Soft Computing, 2018,67:529-539.
doi: 10.1016/j.asoc.2018.03.024
[5] Rendle S, Freudenthaler C, Schmidt-Thieme L . Factorizing Personalized Markov Chains for Next-Basket Recommendation [C]// Proceedings of the 19th International Conference on World Wide Web. Springer, 2010: 811-820.
[6] 印鉴, 王智圣, 李琪 , 等. 基于大规模隐式反馈的个性化推荐[J]. 软件学报, 2014,25(9):1953-1966.
[6] ( Yin Jian, Wang Zhisheng, Li Qi , et al. Personalized Recommendation Based on Large-Scale Implicit Feedback[J]. Journal of Software, 2014,25(9):1953-1966.)
[7] Jamali M, Ester M . A Matrix Factorization Technique with Trust Propagation for Recommendation in Social Networks [C]// Proceedings of the 2010 ACM Conference on Recommender Systems. ACM, 2010: 135-142.
[8] Liu J, Wu C, Xiong Y , et al. List-Wise Probabilistic Matrix Factorization for Recommendation[J]. Information Sciences, 2014,278:434-447.
doi: 10.1016/j.ins.2014.03.063
[9] Koren Y . Collaborative Filtering with Temporal Dynamics[J]. Communications of the ACM, 2010,53(4):89-97.
doi: 10.3389/fphys.2019.00182 pmid: 30971864
[10] Hosseini S, Alizadeh K, Khodadadi A , et al. Recurrent Poisson Factorization for Temporal Recommendation [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017: 847-855.
[11] Xu Z, Yang Y, Hauptmann A G . A Discriminative CNN Video Representation for Event Detection [C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014: 1798-1807.
[12] Graves A, Mohamed A R, Hinton G . Speech Recognition with Deep Recurrent Neural Networks [C]// Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2013: 6645-6649.
[13] Weng C, Yu D, Watanabe S , et al. Recurrent Deep Neural Networks for Robust Speech Recognition [C]// Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2014: 5532-5536.
[14] Arevian G, Panchev C. Optimising the Hystereses of a Two Context Layer RNN for Text Classification[C]// Proceedings of the 2007 IEEE International Joint Conference on Neural Networks. IEEE Press, 2007: 2936-2941.
[15] Wang C, Jiang F, Yang H . A Hybrid Framework for Text Modeling with Convolutional RNN [C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2017: 2061-2070.
[16] Selvin S, Vinayakumar R, Gopalakrishnan E A , et al. Stock Price Prediction Using LSTM, RNN and CNN-Sliding Window Model [C]// Proceedings of the 2017 International Conference on Advances in Computing. IEEE, 2017: 1643-1647.
[17] Madan R, Sarathimangipudi P . Predicting Computer Network Traffic: A Time Series Forecasting Approach Using DWT, ARIMA and RNN [C]//Proceedings of the 11th International Conference on Contemporary Computing. IEEE, 2018: 1-5.
[18] Yu F, Liu Q, Wu S , et al. A Dynamic Recurrent Model for Next Basket Recommendation [C]// Proceedings of the 39th International ACM SIGIR Conference. ACM, 2016: 729-732.
[19] 田垅, 刘宗田 . 最小二乘法分段直线拟合[J]. 计算机科学, 2012,39(S1):482-484.
[19] ( Tian Long, Liu Zongtian . Least- squares Method Piecewise Linear Fitting[J]. Computer Science, 2012,39(S1):482-484.)
[20] Bottou L . Large-Scale Machine Learning with Stochastic Gradient Descent [C]//Proceedings of COMPSTAT’2010. 2010: 177-186.
[21] Chai T, Draxler R R . Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)? - Arguments Against Avoiding RMSE in the Literature[J]. Geoscientific Model Development, 2014,7(3):1247-1250.
doi: 10.5194/gmd-7-1247-2014
[1] Yiwen Zhang,Chenkun Zhang,Anju Yang,Chengrui Ji,Lihua Yue. A Conditional Walk Quadripartite Graph Based Personalized Recommendation Algorithm[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[2] Jiaxin Ye,Huixiang Xiong. Recommending Personalized Contents from Cross-Domain Resources Based on Tags[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[3] Jie Li,Fang Yang,Chenxi Xu. A Personalized Recommendation Algorithm with Temporal Dynamics and Sequential Patterns[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[4] Meimei Chen,Kangjie Xue. Personalized Recommendation Algorithm of Multi-faceted Trust Tensor Based on Tag Clustering[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[5] Meimei Chen, Kangjie Xue. Personalized Recommendation Algorithm Based on Modified Tensor Decomposition Model[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[6] Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
[7] Xie Qi,Cui Mengtian. Group Similarity Based Hybrid Web Service Recommendation Algorithm[J]. 现代图书情报技术, 2016, 32(6): 80-87.
[8] Lin Yuanyuan,Zhan Hongfei,Yu Junhe,Li Changjiang,Zhang Fan. Using Product Reviews to Analyze Sentiment Fluctuation of Consumer[J]. 现代图书情报技术, 2016, 32(11): 44-53.
[9] Zhu Ting, Qin Chunxiu, Li Zuhai. Research on Collaborative Filtering Personalized Recommendation Method Based on User Classification[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[10] Gao Huming, Zhao Fengyue. A Hybrid Recommendation Method Combining Collaborative Filtering and Content Filtering[J]. 现代图书情报技术, 2015, 31(6): 20-26.
[11] Lu Xiaoming. Research on a Lightweight Academic Library Context-aware Recommendation Service Platform Based on GimbalTM[J]. 现代图书情报技术, 2015, 31(3): 101-107.
[12] Song Meiqing. Research on Multi-granularity Users' Preference Mining Based on Collaborative Filtering Personalized Recommendation[J]. 现代图书情报技术, 2015, 31(12): 28-33.
[13] Wang Weijun, Song Meiqing. A Collaborative Filtering Personalized Recommendation Algorithm Through Directionally Mining Users’ Preferences[J]. 现代图书情报技术, 2014, 30(6): 25-32.
[14] Zhao Yan, Wang Yamin. Model for Personalized Recommendation Based on Social Tagging in P2P Environment[J]. 现代图书情报技术, 2014, 30(5): 50-57.
[15] Wang Weijun, Bao Liqian, Liu Kai. Development Trends of Cloud Services in Time Dimension[J]. 现代图书情报技术, 2014, 30(3): 42-48.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn