Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (4): 44-55    DOI: 10.11925/infotech.2096-3467.2019.0530
Current Issue | Archive | Adv Search |
Computer-Assisted ICD-11 Coding Method Based on Chinese Semantic Analysis
Zhang Runtong1,Chen Donghua1,Zhao Hongmei2,Zhu Xiaomin3()
1 School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
2 Peking University People’s Hospital, Beijing 100044, China
3 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China
Download: PDF(1615 KB)   HTML ( 9
Export: BibTeX | EndNote (RIS)      

[Objective] This study proposes a computer-assisted coding method based on the 11th Revision of International Classification of Diseases (ICD-11) and Chinese semantic analysis, aiming to improve the efficiency of medical coding. [Methods] First, we constructed a new model for the entities and relations in ICD-11 based on traditional graphic models. Then, we used an improved measurement for semantic similarity to estimate the confidence of ICD-11 candidate codes. Finally, the proposed model generated candidate ICD codes. [Results] We examined our model with a coded hospital dataset, and found the proposed method outperformed existing ones. Our method achieved a success rate of 42% in assisted mode and 73% in precise mode. [Limitations] The Chinese version of ICD-11 does not allow us to leverage more Chinese semantics information to improve coding precision. [Conclusions] The proposed method improves the efficiency of coders and quality of medical records. It also promotes the development of Chinese medical informatics.

Key wordsICD-11      International Classification of Diseases      Chinese Semantics      Medical Coding System      Computer-Assisted Coding     
Received: 20 May 2019      Published: 01 June 2020
ZTFLH:  TP319  
Corresponding Authors: Zhu Xiaomin     E-mail:

Cite this article:

Zhang Runtong,Chen Donghua,Zhao Hongmei,Zhu Xiaomin. Computer-Assisted ICD-11 Coding Method Based on Chinese Semantic Analysis. Data Analysis and Knowledge Discovery, 2020, 4(4): 44-55.

URL:     OR

Flowchart of the Computer-Assisted ICD-11 Coding Method in Chinese Semantics Context
语义元素模型 模型标记 模型属性 属性描述
词语 Lemma lexicalEntryId
含义 Sense senseId
词义关系 SenseRelation sourceSenseId
同义词集 Synset synsetId 同义词集ID
同义词集关系 SysnetRelation sourceSynsetId
Modeling of Semantic Elements Based on Chinese Open WordNet
ICD内容类别 图模型标签 ICD-11中的定义或描述
根节点 ICD11MMS 各个章节点的父节点
ICD-11实体 Entity 章、块以及ICD有效编码实体
章节点 Chapter_{章号} 每章下所有信息的父节点
扩展编码实体 Chapter_X 扩展编码实体
有效编码实体 Detail 有效编码实体
索引节点 IndexTerm 索引文本项
章节关系 r(0)=IS_A 章节层次结构中父节点和子节点的关系
编码指导关系 r(1) 实体与其他实体间的编码约束关系
后组配关系 r(2) 用于标记不同实体的组配关系,如“Associated with”关系
索引关系 HAS_INDEX 用于关联实体与对应的索引文本的关系
Entities and Their Relationships in the ICD-11 Graph Model
IS_A and HAS_INDEX Relationships in Graph Model G
Three Relationship Types in Graph Model G
Mapping Between Information from the WHO’s Post-Coordination System and Entity Relations in Graph Model
图模型参数 ICD-11图模型 ICD-11中文简明版现有结构
节点数量(个) 134 399 32 675
属性数量(个) 635 922 231 744
关系数量(个) 270 210 32 324
关系类型数量(种) 38 1
Comparasion Between the ICD-11 Graph Model and Simplified Chinese Version of ICD-11
Closeness Centrality of Chapter 28 Between the ICD-11 Graph Model and Existing Structures
变量 N N* 均值 标准差 最小值 Q1 中值 Q3 最大值
P 3 019 483 0.11 0.27 0.00 0.00 0.00 0.02 1.00
R 3 019 483 0.56 0.48 0.00 0.00 1.00 1.00 1.00
F1 1 827 1 675 0.21 0.33 0.00 0.01 0.02 0.25 1.00
Performance of Our Method in Precise Mode
变量 N N* 均值 标准差 最小值 Q1 中值 Q3 最大值
P 3 019 483 0.21 0.36 0.00 0.00 0.01 0.18 1.00
R 2 978 524 0.41 0.38 0.00 0.00 0.29 0.78 1.00
F1 2 229 1 273 0.18 0.25 0.00 0.02 0.07 0.22 1.00
D 2 229 1273 0.38 0.27 0.00 0.14 0.38 0.60 0.98
Performance of Our Method in Assisted Mode
Success Rates Between Different Methods
[1] Boerma T, Harrison J, Jakob R , et al. Revising the ICD: Explaining the WHO Approach[J]. Lancet, 2016,388(10059):2476-2477.
doi: 10.1016/S0140-6736(16)31851-7
[2] 中华人民共和国国家卫生健康委员会. 关于印发国际疾病分类第十一次修订本 (ICD-11) 中文版的通知[EB/OL]. [ 2018- 12- 21]. 43d2881905a8d4f44ed2.shtml.
[2] ( National Health Commission of the People’s Republic of China. Notice on Printing and Distributing the Chinese Version of the Eleventh Revision of the International Classification of Diseases (ICD-11)[EB/OL]. [ 2018- 12- 21]. 7c43d2881905a8d4f44ed2.shtml.
[3] 杨兰, 于明 . ICD-11的模型与修订进展[J]. 中国病案, 2015,16(5):20-24.
[3] ( Yang Lan, Yu Ming . The Model of the 11th International Classification of Diseases and Its Revised Progress[J]. Chinese Medical Record, 2015,16(5):20-24.)
[4] Dyers R, Ward G, Du Plooy S , et al. Training and Support to Improve ICD Coding Quality: A Controlled Before-and-After Impact Evaluation[J]. South African Medical Journal, 2017,107(6):501-506.
doi: 10.7196/SAMJ.2017.v107i6.12075
[5] Jones K A, Beecroft N J, Patterson E S . Towards Computer-Assisted Coding: A Case Study of ‘Charge by Documentation’ Software at an Endoscopy Clinic[J]. Health Policy and Technology, 2014,3(3):208-214.
doi: 10.1016/j.hlpt.2014.05.002
[6] 郑卫萍 . 从ICD-11的设计看对我国病案工作的影响[J]. 中国病案, 2011,12(10):36-37.
[6] ( Zheng Weiping . The Effect of ICD-11 Design on Medical Records Management in Our Country[J]. Chinese Medical Record, 2011,12(10):36-37.)
[7] Quiazúa G, Rojas C, Ordoñez J, et al. Computer Assisted Assignment of ICD Codes for Primary Admission Diagnostic in ICUs[C]// Proceedings of the 12th Colombian Conference on Computing. Springer, 2017: 211-223.
[8] 杨兰, 于明, 王婷艳 , 等. 计算机辅助ICD-10编码系统的应用[J]. 中国病案, 2015,16(12):28-32.
[8] ( Yang Lan, Yu Ming, Wang Tingyan , et al. An Application of a Computer Aided ICD-10 Coding System[J]. Chinese Medical Record, 2015,16(12):28-32.)
[9] Farkas R, Szarvas G. Automatic Construction of Rule-based ICD-9-CM Coding Systems[J]. BMC Bioinformatics, 2008, 9(S3): Article No. S10.
[10] 杨华, 汪凯, 郑晓华 . ICD-10智能辅助编码方法的探讨[J]. 中国病案, 2016,17(9):45-47.
[10] ( Yang Hua, Wang Kai, Zheng Xiaohua . Investigation on the ICD-10 Intelligent Assisted Coding Methods[J]. Chinese Medical Record, 2016,17(9):45-47.)
[11] 成诚, 黄昊, 欧东 . 疾病诊断自动编码系统的设计与应用[J]. 中国病案, 2018,19(9):35-37.
[11] ( Cheng Cheng, Huang Hao, Ou Dong . Design and Application of Automatic Coding for Disease Diagnosis[J]. Chinese Medical Record, 2018,19(9):35-37.)
[12] World Health Organization. ICD-11 Coding Tool Mortality and Morbidity Statistics[EB/OL]. [2019-01-25].
[13] World Health Organization. Home Page ICD API[EB/OL]. [2019-01-25].
[14] Wang S, Bond F. Building the Chinese Open WordNet (COW): Starting from Core Synsets[C]// Proceedings of the 11th Workshop on Asian Language Resources, Nagoya, Japan. 2013: 10-18.
[15] Miller G A . WordNet: A Lexical Database for English[J]. Communications of the Association for Computing Machinery, 1995,38(11):39-41.
[16] 廖爱民, 张萌, 刘爱民 . ICD-11扩展码应用的探讨[J]. 中国病案, 2017,18(4):45-47.
[16] ( Liao Aimin, Zhang Meng, Liu Aimin . Discussion of Application of ICD-11 Extension Codes[J]. Chinese Medical Record, 2017,18(4):45-47.)
[17] 张萌, 廖爱民, 刘海民 , 等. ICD-11与ICD-10分类体系的对比研究[J]. 中国病案, 2016,17(6):21-24.
[17] ( Zhang Meng, Liao Aimin, Liu Haimin , et al. A Comparative Research on the ICD-11 and ICD-10 Classification Systems[J]. Chinese Medical Record, 2016,17(6):21-24.)
[18] 宁温馨, 于明 . 基于语义相似度计算的临床诊断自动编码算法研究[J]. 医学信息学, 2016,37(2):52-56.
[18] ( Ning Wenxin, Yu Ming . Algorithmic Research on Automatic Coding of Clinical Diagnoses Based on Semantic Similarity Calculation[J]. Journal of Medical Informatics, 2016,37(2):52-56.)
[19] Bakkelund D . An LCS-Based String Metric[D]. Olso: University of Oslo, 2009.
[20] Chen D, Zhang R, Zhu X . Leveraging Shannon Entropy to Validate the Transition Between ICD-10 and ICD-11[J]. Entropy, 2018,20(10):769.
doi: 10.3390/e20100769
[21] 邓应梅, 赵琳, 王怡 , 等. 国际疾病分类ICD-11的特点与新进展[J]. 中华医院管理杂志, 2018,34(6):462-465.
[21] ( Deng Yingmei, Zhao Lin, Wang Yi , et al. Characteristics and Progress of International Disease Classification on ICD-11[J]. Chinese Journal of Hospital Administration, 2018,34(6):462-465.)
[22] 褚丹奇, 宋磊, 李莹 . 基于ICD标准的临床诊断、手术与操作编码系统的设计与应用[J]. 中国卫生信息管理杂志, 2013,10(5):444-447.
[22] ( Chu Danqi, Song Lei, Li Ying . Design and Application of ICD Standards-Based Clinical Diagnostic and Surgical Coding System[J]. Chinese Journal of Health Informatics and Management, 2013,10(5):444-447.)
[23] 陈东华, 张润彤, 付磊 , 等. SNOMED CT体系下医疗健康大数据映射和迁移方法研究[J]. 情报学报, 2018,37(5):524-532.
[23] ( Chen Donghua, Zhang Runtong, Fu Lei , et al. Mapping and Migration of Medical and Health Big Data with SNOMED CT[J]. Journal of the China Society for Scientific and Technical Information, 2018,37(5):524-532.)
[24] 邹敏, 孙宏伟, 邱卓英 , 等. 基于ICD-11和ICF的智力残疾术语、诊断和分类研究[J]. 中国康复理论与实践, 2019,25(1):1-5.
[24] ( Zou Min, Sun Hongwei, Qiu Zhuoying , et al. Terminology, Diagnosis and Classification of Intellectual Disability Using WHO ICD-11 and ICF[J]. Chinese Journal of Rehabilitation Theory and Practice, 2019,25(1):1-5.)
[1] Nie Jing, Li Qiang, Pang Li, Ying Huijie. Study of Web Page Extraction Algorithm in Mobile Meta Search Engine[J]. 现代图书情报技术, 2010, 26(10): 54-58.
[2] Wang Kai,Wang Chaofei. A Table Retrieval Algorithm Based on the Vector Space Model[J]. 现代图书情报技术, 2010, 26(4): 41-45.
[3] Fan Yi,Mu Dongmei. Comparative Study on Protégé and KAON[J]. 现代图书情报技术, 2007, 2(8): 18-21.
[4] Liu Jiajia,Dong Min,Fang Shu . A Study on the Foreign Patent Information Analysis Software Tools[J]. 现代图书情报技术, 2007, 2(2): 67-74.
[5] Ma Jianxia,Sun Chengquan. Status and Trends of Patent Information Analysis Software[J]. 现代图书情报技术, 2006, 22(1): 66-70.
[6] Sun Caijie. The Development and Application of RSS in Library[J]. 现代图书情报技术, 2005, 21(6): 83-85.
[7] Gao Feng. Design and Realization of Transformation  from MARC Data to XML Document[J]. 现代图书情报技术, 2005, 21(1): 22-25.
[8] Chang Chun. How to Use KAON to Create Ontology and Estimation about It[J]. 现代图书情报技术, 2004, 20(8): 14-17.
[9] Xu Jiangang. Status Monitoring and Automatic Recovery of Horizon WebPAC[J]. 现代图书情报技术, 2004, 20(3): 32-34.
[10] Li Guansheng. A Study on the Data Structure and Data Exchange between the UNIX System and Web Database Systems[J]. 现代图书情报技术, 2002, 18(5): 59-61.
[11] Zhao Yingli. Design and Realization of Evaluation System of Library and Information System of the CAS[J]. 现代图书情报技术, 2001, 17(1): 71-72.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938