Please wait a minute...
Data Analysis and Knowledge Discovery  2019, Vol. 3 Issue (12): 52-60    DOI: 10.11925/infotech.2096-3467.2019.0554
Current Issue | Archive | Adv Search |
Analyzing Sci-Tech Topics Based on Semantic Representation of Patent References
Jinzhu Zhang1,2(),Yue Wang1,Yiming Hu1
1 School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
2 Jiangsu Collaborative Innovation Center of Social Safety Science and Technology, Nanjing 210094, China
Download: PDF(2200 KB)   HTML ( 1
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper explores the content mining method for scientific references in patent (SRP) based on text semantic representation. It also improves the accuracy, comprehensiveness and interpretability of knowledge flow analysis. [Methods] Firstly, we extracted keywords and abstracts from patents to represent the SRPs and created vectors for these items. Then, we computed the distance between vectors to calculate their semantic similarities. Finally, we obtained and mapped the topics of patents and SRP contents from the field of nanotechnology. [Results] We found our method could map relationship among sci-tech topics from the content perspective effectively. [Limitations] We only conducted exploratory research with abstracts and keywords rather than full texts. [Conclusions] The proposed method improves the knowledge flow analysis of patents.

Key wordsScientific References in Patent      Representation Learning      Topic Linkage      Content Mining     
Received: 24 May 2019      Published: 25 January 2020
ZTFLH:  G254  
Corresponding Authors: Jinzhu Zhang     E-mail: zhangjinzhu@njust.edu.cn

Cite this article:

Jinzhu Zhang,Yue Wang,Yiming Hu. Analyzing Sci-Tech Topics Based on Semantic Representation of Patent References. Data Analysis and Knowledge Discovery, 2019, 3(12): 52-60.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2019.0554     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2019/V3/I12/52

聚类 聚类中心点(专利标题) 应用方向
1 Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in
carbon fiber reinforced epoxy composites
纳米材料领域
2 Gold nanoparticle probes for the detection of nucleic acid targets 纳米生物领域
3 Binding properties of replication protein A from human and yeast cells 纳米生物/纳米医学领域
4 Selective retention of bone marrow-derived cells to enhance spinal fusion 纳米生物/纳米医学领域
5 An investigation of plasma chemistry for dc plasma enhanced chemical vapour deposition of
carbon nanotubes and nanofibres
纳米材料领域
聚类 聚类中心点
(专利号)
聚类中心点
(专利标题)
应用方向
1 8895067 Immune response stimulating
composition comprising
nanoparticles based on a methyl
vinyl ether-maleic acid copolymer
纳米生物/纳米材料领域
2 8288759 Vertical stacking of carbon
nanotube arrays for current
enhancement and control
纳米材料
领域
3 8124518 Semiconductor heterostructure
nanowire devices
纳米材料
领域
排序 专利关键词 专利科学引文关键词
1
2
3
4
5
6
7
8
9
10
graphene
nanoparticles
quantum
molecular
substrate
semiconductor
carbon
nanotubes
magnetic
nanowire
cell
nanoparticles
dna
patients
surface
membrane
tumor
hypoxia
materials
nanptubes
相似度
关键词
cell dna patients surface membrane
graphene
quantum
molecular
substrate
semiconductor
0.132352
0.245108
0.217644
0.314112
0.177933
0.300034
0.147008
0.160576
0.106681
0.220436
0.103014
0.003866
0.057919
-0.02874
-0.01617
0.163717
0.164707
0.19299
0.632933
0.258763
0.25389
0.17078
0.202147
0.484191
0.213334
[1] 陈凯, 徐峰, 程如烟 . 非专利引文分析研究进展[J]. 图书情报工作, 2015,59(5):137-144.
[1] ( Chen Kai, Xu Feng, Cheng Ruyan . Review on Development of Non-Patent References Research[J]. Library and Information Service, 2015,59(5):137-144.)
[2] 陈亮, 张志强, 尚玮姣 . 专利引文分析方法研究进展[J]. 现代图书情报技术, 2013(7/8):75-81.
[2] ( Chen Liang, Zhang Zhiqiang, Shang Weijiao . Reviews on Development of Patent Citation Research[J]. New Technology of Library and Information Service, 2013(7/8):75-81.)
[3] Narin F . Patent Bibliometrics[J]. Scientometrics, 1994,30(1):147-155.
[4] Narin F, Breitzman A, Thomas P . Using Patent Citation Indicators to Manage a Stock Portfolio[M]. Springer Netherlands, 2004.
[5] Verbeek A, Debackere K, Luwel M , et al. Linking Science to Technology: Using Bibliographic References in Patents to Build Linkage Schemes[J]. Scientometrics, 2002,54(3):399-420.
[6] Breschi S, Catalini C . Tracing the Links Between Science and Technology: An Exploratory Analysis of Scientists’ and Inventors’ Networks[J]. Research Policy, 2010,39(1):14-26.
[7] 赵黎明, 高杨, 韩宇 . 专利引文分析在知识转移机制研究中的应用[J]. 科学学研究, 2002,20(3):297-300.
[7] ( Zhao Liming, Gao Yang, Han Yu . Application of Patent Citation Analysis to the Research of Knowledge-transfer Mechanism[J]. Studies in Science of Science, 2002,20(3):297-300.)
[8] 赵黎明, 李海霞, 韩宇 . 基于数据挖掘的专利引文研究与知识发现[J]. 预测, 2002,21(6):6-9.
[8] ( Zhao Liming, Li Haixia, Han Yu . The Analysis of Citation in Patents and Knowledge Discovery Based on Data Mining[J]. Forecasting, 2002,21(6):6-9.)
[9] Callaert J, Looy B V . Delineating the Scientific Footprint in Technology: Identifying Scientific Publications within Non-patent References[J]. Scientometrics, 2012,91(2):383-398.
[10] 张金柱, 张晓林 . 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014,33(3):259-266.
[10] ( Zhang Jinzhu, Zhang Xiaolin . Identification of Radical Innovation Based on Mutation of Cited Scientific Knowledge[J]. Journal of the China Society for Scientific and Technical Information, 2014,33(3):259-266.)
[11] 赵志耘, 雷孝平 . 我国生物科技领域技术创新与基础研究关联分析——从专利引文分析的角度[J]. 情报学报, 2012,31(12):1283-1289.
[11] ( Zhao Zhiyun, Lei Xiaoping . Analysis of Scientific Linkage Between China’s Technology Innovation and Basic Research in Biotechnology Industry Based on Patent Citation[J]. Journal of the China Society for Scientific and Technical Information, 2012,31(12):1283-1289.)
[12] Mikolov T, Chen K, Corrado G S , et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[13] Le Q, Mikolov T . Distributed Representations of Sentences and Documents [C]//Proceedings of the 31st International Conference on Machine Learning, 2014: 1188-1196.
[14] Mahata D, Kuriakose J, Shah R R , et al. Key2Vec: Automatic Ranked Keyphrase Extraction from Scientific Articles Using Phrase Embeddings [C]//Proceedings of the 16th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2018: 634-639.
[15] Pagliardini M, Gupta P, Jaggi M . Unsupervised Learning of Sentence Embeddings Using Compositional n-Gram Features [C]//Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics. 2017: 528-540.
[16] Saha T K, Joty S, Al Hasan M . Con-S2V: A Generic Framework for Incorporating Extra-Sentential Context into Sen2Vec [C]//Proceedings of ECML PKDD: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. 2017: 753-769.
[17] Tian H, Zhuo H H . Paper2vec: Citation-Context Based Document Distributed Representation for Scholar Recommendation[OL]. arXiv Preprint, arXiv: 1703.06587.
[18] Jain S, Howe B, Yan J , et al. Query2Vec: An Evaluation of NLP Techniques for Generalized Workload Analytics[OL]. arXiv Preprint, arXiv: 1801.05613.
[19] Han J, Song Y, Zhao W X , et al. Hyperdoc2vec: Distributed Representations of Hypertext Documents[OL]. arXiv Preprint, arXiv: 1805. 03793.
[1] Qingtian Zeng,Xiaohui Hu,Chao Li. Extracting Keywords with Topic Embedding and Network Structure Analysis[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] Qingtian Zeng,Mingdi Dai,Chao Li,Hua Duan,Zhongying Zhao. Discovering Important Locations with User Representation and Trace Data[J]. 数据分析与知识发现, 2019, 3(6): 75-82.
[3] Jinzhu Zhang,Yiming Hu. Extracting Titles from Scientific References in Patents with Fusion of Representation Learning and Machine Learning[J]. 数据分析与知识发现, 2019, 3(5): 68-76.
[4] Chuanming Yu,Bolin Feng,Lu An. Sentiment Analysis in Cross-Domain Environment with Deep Representative Learning[J]. 数据分析与知识发现, 2017, 1(7): 73-81.
[5] Wang Yuefen,Xu Dandan,Li Fei. Experimental Study of Patent Information Content Mining[J]. 现代图书情报技术, 2008, 24(12): 59-65.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn