Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (2/3): 182-191    DOI: 10.11925/infotech.2096-3467.2019.0620
Current Issue | Archive | Adv Search |
Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules
Wei Wei1,2,Guo Chonghui2(),Xing Xiaoyu2
1Center for Energy, Environment & Economy Research, Zhengzhou University, Zhengzhou 450001, China
2Institution of Systems Engineering, Dalian University of Technology, Dalian 116024, China
Download: PDF(1343 KB)   HTML ( 0
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper proposes a method automatically annotating the knowledge points of test questions from online education resources.[Methods] First, we introduced the concept of text semantics to establish new association rules. Then, considering the semantic matching degrees between the target questions and the rules, we proposed an automatic method for knowledge point annotation. Finally, we presented a personalized question recommendation mechanism.[Results] We examined the proposed method with test questions from middle school mathematics and high school history courses. We also compared our model’s labeling accuracy with naive Bayes, K nearest neighbor, random forest and support vector machine, and yielded better results.[Limitations] The understanding of the semantics of test questions and the labeling accuracy could be further improved.[Conclusions] The knowledge point annotation and the personalized question recommendation methods could improve smart teaching and online learning.

Key wordsKnowledge      Point      Annotation      Semantic      Association      Rules      Online      LearningPersonalized      Recommendation     
Received: 06 June 2019      Published: 26 April 2020
ZTFLH:  TP393 G254  
Corresponding Authors: Chonghui Guo     E-mail: dlutguo@dlut.edu.cn

Cite this article:

Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 182-191.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2019.0620     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2020/V4/I2/3/182

Generation Process of Effective Rules
Schematic Illustration of Text Preprocessing
Knowledge Point Annotation Process
Accuracy Comparison of the KPA-SAR with Some Classification Methods
实例 试题 标注结果 真实结果 评价
1 函数f(x)=mx2-6x+m+8的定义域为R,则m的取值范围是()
A.m≥1或m≤-9 B.m≥1 C.-9≤m≤1 D.0<m≤1
函数定义域;
函数值域
函数定义域 正确
2 已知函数f(x)=x3+ax2+b的图像在点P(1,0)处的切线与直线3x+y=0平行.
求函数f(x)在区间[-2,4]上的最小值和最大值.
函数值域 导数的概念;
导数的几何意义
错误
3 中国古代的专制主义之“体”,始终存在着监察、谏议和封驳制度,并通过“微服私访”、“采诗观风”、公开巡视,设置“谏鼓谤木”等机制进行民间政治信息的收集,这些制度和机制
A.有利于决策的科学性和民主性 B.避免了专制主义的危害和弊端 C.杜绝了决策的主观性和随意性 D.有效保证了官僚机构的廉洁和效率
古代中国政治制度的特点 古代中国政治制度的特点;中国古代的中央集权制度 正确
Annotation Examples of Some Questions
Personalized Question Recommendation Process Based on the Correlation Characteristics Between Knowledge Points
知识点 错题(集) 推荐题(集)
垂直;
四棱锥;
二面角
1,如图,在四棱锥P–ABCD中,PA⊥底面ABCD,DAB为直角,AB//CD,AD=CD=2AB,EF分别为PCCD的中点,
(I) 求证:CD⊥平面BEF;
(II)设PA=k·AB,且锐二面角EBDC的大小大于30°,求k的取值范围。
1,如图,在四棱锥PABCD中,PA⊥底面ABCD,ABCD是直角梯形,ABAD,CDAD,AB=2AD,EPB的中点,
(I) 求证:平面EAC⊥平面PBC;
(II)若二面角P-AC-E的余弦值为1/3,求直线PA与平面EAC所成的角的正弦值。
2,如图,在梯形中ABCD,AB//CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1,
(I) 求证:BC⊥平面ACFE;
(II) 点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围。
导数的
概念;
导数的
几何意义
1,已知函数f(x)=0.3x3+x2+ax+1,且曲线y=f (x)在点(0,1)处的切线斜率为-3,
(I) 求f(x)单调区间;
(II) 求f(x)的极值。
2,已知函数f(x)=0.5x2+acosx,函数g(x)是函数y=f(x)的导函数,
(I) 若f(x)在(π/2,f(π/2))处的切线方程为y=(π+2)x/2-(π2+4π)/8,求a的值;
(II) 若a≥0,且f(x)在x=0时取得最小值,求实数a的取值范围;
(III) 在(1)的条件下,求证:当x>0时,(g(x)/2)1/2+0.375x2>e(x-1)/x
1,已知函数f(x)= 0.3x3+0.5ax2+bx+c(a,b,cR),且函数f(x)在区间(0,1)内取得极大值,在区间(1,2)内取得极小值,则Z=(a+3)2+b2的取值范围是()。
2,设曲线y=(ax-1)ex(其中e是自然对数的底数)在点A(x0,y1)处的切线为l1,曲线y=(1-x)e-x在点B(x0,y2)处的切线为l2,若存在x0∈(0,1)使得l1l2,则实数a的取值范围是多少?
3,已知函数f(x)= x3+ax2+b的图象在点P(1,0)处的切线与直线3x+y=0平行。
(I) 求函数f(x)的解析式;
(II)求函数f(x)在区间[-2,4]上的最小值和最大值。
4,已知函数f(x)=x2-2ax+2ex,
(I) 函数f(x)在x=0处的切线方程为2x+y+b,求ab的值;
(II) 当a>0时,若曲线y=f(x)上存在三条斜率为k的切线,求实数k的取值范围。
Examples of Similar Question Recommendations Based on the Correlation Characteristics Between Knowledge Points
[1] Roberts E, Engel G, Chang C , et al. Computing Curricula 2001: Computer Science[J]. IEEE Computer Society, 2001,34(1):4-23.
[2] 李卫东, 杨耐生, 申强华 , 等. 远程教育杂志[J]. 远程教育杂志, 2006(5):34-37.
[2] ( Li Weidong, Yang Naisheng, Shen Qianghua , et al. Development of a Distance-learning Tutoring System Based on Knowledge Points[J]. Distance Education Journal, 2006(5):34-37.)
[3] 陈智, 隋光远, 皮秀云 . 论知识点是人的认知单位[J]. 心理科学, 2002,25(3):369-370.
[3] ( Chen Zhi, Sui Guangyuan, Pi Xiuyun . Knowledge-Point is a Cognitive Unit[J]. Psychological Science, 2002,25(3):369-370.)
[4] Oren E, Delbru R, Möller K , et al. Annotation and Navigation in Semantic Wikis [C]// Proceedings of the 1st Workshop on Semantic Wikis: From Wiki to Semantics. 2006.
[5] 傅柱 . 图书馆学研究[J]. 图书馆学研究, 2016(4):10-17.
[5] ( Fu Zhu . A Review of Semantic Annotation[J]. Research on Library Science, 2016(4):10-17.)
[6] Song Z . Application of Cloud Desktop in Modern Chinese Multi-Category Words Part of Speech Tagging[J]. Procedia Engineering, 2017,174:1215-1220.
[7] Meguehout H, Bouhadada T, Laskri M T . Semantic Role Labeling for Arabic Language Using Case-Based Reasoning Approach[J]. International Journal of Speech Technology, 2017,20(2):363-372.
[8] 邓三鸿, 王昊, 秦嘉杭 , 等. 基于字角色标注的中文书目关键词标引研究[J]. 中国图书馆学报, 2012,38(2):38-49.
[8] ( Deng Sanhong, Wang Hao, Qin Jiahang , et al. Research on Keywords Indexing for Chinese Bibliography Based on Word Roles Annotation[J]. Journal of Library Science in China, 2012,38(2):38-49.)
[9] 陆伟, Stephen Robertson . 基于域加权词频法的XML文档级检索实现与评价[J]. 中国图书馆学报, 2006,32(6):57-60.
[9] ( Lu Wei, Stephen Robertson . Field-Weighted XML Document Level Retrieval and Evaluation[J]. Journal of Library Science in China, 2006,32(6):57-60.)
[10] 徐雷, 王晓光 . 叙事型图像语义标注模型研究[J]. 中国图书馆学报, 2017,43(5):70-83.
[10] ( Xu Lei, Wang Xiaoguang . Narrative Image Annotation Ontology for Semantic Web[J]. Journal of Library Science in China, 2017,43(5):70-83.)
[11] Zhao J, Glueck M, Breslav S , et al. Annotation Graphs: A Graph-Based Visualization for Meta-Analysis of Data Based on User-Authored Annotations[J]. IEEE Transactions on Visualization and Computer Graphics, 2016,23(1):261-270.
[12] 余春 . 中美大学图书馆应用社会标注的比较研究[J]. 大学图书馆学报, 2014,32(1):83-89.
[12] ( Yu Chun . Comparative Study on the Application of Social Tagging in American and Chinese Academic Libraries[J]. Journal of Academic Libraries, 2014,32(1):83-89.)
[13] 陈叶旺, 李文, 彭鑫 , 等. 基于本体的文档语义标注改进方法[J]. 东南大学学报:自然科学版, 2009,39(6):1109-1113.
[13] ( Chen Yewang, Li Wen, Peng Xin , et al. Improved Semantic Annotation Method for Documents Based on Ontology[J]. Journal of Southeast University: Natural Science Edition, 2009,39(6):1109-1113.)
[14] 李宏言, 范利春, 高鹏 , 等. 大数据语音语料库的社会标注技术[J]. 清华大学学报:自然科学版, 2013,53(6):908-912.
[14] ( Li Hongyan, Fan Lichun, Gao Peng , et al. Social Annotation Technology for Large Speech Corpora[J]. Journal of Tsinghua University: Science and Technology, 2013,53(6):908-912.)
[15] 吴雷, 刘贤友, 孙丙宇 . 基于增量AHP的学习资源多标签标注研究[J]. 电子技术, 2015,44(4):10-15.
[15] ( Wu Lei, Liu Xianyou, Sun Bingyu . Research on Multi-label Annotation of Learning Resources Based on Incremental AHP[J]. Electronic Technology, 2015,44(4):10-15.)
[16] 朱天宇, 黄振亚, 陈恩红 , 等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017,40(1):176-191.
[16] ( Zhu Tianyu, Huang Zhenya, Chen Enhong , et al. Cognitive Diagnosis Based Personalized Question Recommendation[J]. Chinese Journal of Computers, 2017,40(1):176-191.)
[17] Wu D, Lu J, Zhang G . A Fuzzy Tree Matching-Based Personalized E-Learning Recommender System[J]. IEEE Transactions on Fuzzy Systems, 2015,23(6):2412-2426.
[18] Eyharabide V, Amandi A . Ontology-Based User Profile Learning[J]. Applied Intelligence, 2012,36(4):857-869.
[19] Salehi M, Kamalabadi I N . Hybrid Recommendation Approach for Learning Material Based on Sequential Pattern of the Accessed Material and the Learner’s Preference Tree[J]. Knowledge-Based Systems, 2013,48:57-69.
[20] Verbert K, Manouselis N, Ochoa X , et al. Context-aware Recommender Systems for Learning: A Survey and Future Challenges[J]. IEEE Transactions on Learning Technologies, 2012,5(4):318-335.
[21] Liu Q, Zhang H P, Yu H , et al. Chinese Lexical Analysis Using Cascaded Hidden Markov Model[J]. Journal of Computer Research and Development, 2004,41(8):1421-1429.
[22] Wei W, Guo C H, Chen J F , et al. Textual Topic Evolution Analysis Based on Term Co-occurrence: A Case Study on the Government Work Report of the State Council(1954-2017) [C]//Proceedings of the 12th International Conference on Intelligent Systems and Knowledge Engineering(ISKE). 2017: 1-6.
[23] Agrawal R, Imielinski T, Swami A N . Mining Association Rules Between Sets of Items in Large Databases [C]//Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. 1993: 207-216.
[24] 哈尔滨工业大学社会计算与信息检索研究中心. 同义词词林扩展版[OL].[2017-12-04]. https://www.ltp-cloud.com/download/.
[24] ( Center for Social Computing and Information Retrieval, Harbin Institute of Technology. Synonym Word Forest Expansion Version[OL].[2017-12-04]. https://www.ltp-cloud.com/download/.)
[25] Dwivedi P, Bharadwaj K K . E-Learning Recommender System for a Group of Learners Based on the Unified Learner Profile Approach[J]. Expert Systems, 2015,32(2):264-276.
[1] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[2] Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133.
[3] Ye Jiaxin,Xiong Huixiang,Jiang Wuxuan. A Physician Recommendation Algorithm Integrating Inquiries and Decisions of Patients[J]. 数据分析与知识发现, 2020, 4(2/3): 153-164.
[4] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[5] Tian Zhonglin,Wu Xu,Xie Xiaqing,Xu Jin,Lu Yueming. Real-time Analysis Model for Short Texts with Relationship Graph of Domain Semantics[J]. 数据分析与知识发现, 2020, 4(2/3): 239-248.
[6] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
[7] Haixia Sun,Panpan Deng,Jiao Li,Liu Shen,Qing Qian. Automatic Concept Update Strategy Towards Heterogeneous Terminology Integration[J]. 数据分析与知识发现, 2020, 4(1): 121-130.
[8] Chuanming Yu,Haonan Li,Manyi Wang,Tingting Huang,Lu An. Knowledge Representation Based on Deep Learning:Network Perspective[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[9] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[10] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[11] Chuang Hong,He Li,Lihui Peng,Yiming Xu. Evaluating Information Services of Online Health Q&A Platform[J]. 数据分析与知识发现, 2019, 3(8): 41-52.
[12] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[13] Jiahui Hu,An Fang,Wanqing Zhao,Chenliu Yang,Huiling Ren. Annotating Chinese E-Medical Record for Knowledge Discovery[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[14] Peng Guan,Yuefen Wang,Zhu Fu. Analyzing Topic Semantic Evolution with LDA: Case Study of Lithium Ion Batteries[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[15] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn