Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (2/3): 122-133    DOI: 10.11925/infotech.2096-3467.2019.0732
Current Issue | Archive | Adv Search |
Topic Resonance of Micro-blogs on Similar Public Health Emergencies
Liang Yanping1,An Lu1,2(),Liu Jing2
1Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
2School of Information Management, Wuhan University, Wuhan 430072, China
Download: PDF(1341 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This study aims to explore the resonance patterns of micro-blog users on different topics from similar public health emergencies.[Methods] We constrcted a random resonance model for sub-topics of public health emergencies based on the Langevin equation and collected more than 170,000 microblog entries on the Shandong vaccine incident and the Changchun Changsheng vaccine incident from the Sina Weibo platform. We analyzed the resonance pattern of micro-blog topics by calculating topic factors, geography factors, attitude values and topic salience.[Results] The topics about the progress of events, the public opinion, and the government response generated obvious resonance. However, the topics on the background knowledge and post-measures failed to cause resonance from similar public health emergencies.[Limitations] We only analyzed the resonance patterns with micro-blogging topics on two similar events. More research is needed to examine our findings with other cases.[Conclusions] Resonances exist between the topics of similar public health emergencies, which are related to the number of relevant micro-blog entries, topic contents and other factors.

Key wordsMicroblogging Topics      Stochastic Resonance      Langevin Equation      Online Public Opinions      Emergency      Similar Events     
Received: 21 June 2019      Published: 26 April 2020
ZTFLH:  G350  
Corresponding Authors: Lu An     E-mail: anlu97@163.com

Cite this article:

Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 122-133.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2019.0732     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2020/V4/I2/3/122

情感值e 情感强度e?
e<-10000000000 0.00
-1000000000≤e<-100000000 0.05
-100000000≤e<-10000000 0.10
-100≤e<-10 0.45
-10≤e<0 0.50
0≤e≤10 0.50
10<e≤100 0.55
1000000000<e≤10000000000 0.95
10000000000<e 1.00
Emotional Intensity of Microblogging Posts
话题因素i 地域因素r 态度值p 长生疫苗事件热度H 山东疫苗事件舆情指数s
0.03 0.06 0.51 0.61 0.39
Parameters of the Vaccine Event Resonance Model
Stochastic Resonance in Two Vaccine Events
山东疫苗事件 长春疫苗事件
事件进展 澎湃新闻报道未冷藏疫苗流入多省,或致人命;多家药品批发企业涉山东“疫苗”案被通报;沃森生物子公司被撤销经营执照… 国家药监局发布对长春长生的飞行检查结果;国家药监局负责人介绍#长生问题疫苗#案情况:已责令企业停止生产,对企业立案调查;山东查明长春长生25万支百白破疫苗流向,将开展后续补种工作…
群众意见 网友要求政府部门尽快查清涉事医院和受害者;家长为孩子健康成长表示担忧;网友谴责政府失职… 网友谴责政府部门不作为;网友谴责有人为疫苗事件洗地;网友对祖国的下一代的遭遇感到痛心…
政府回应 政府提醒群众到正规疫苗接种单位接种疫苗;世卫组织称问题疫苗的几乎不会产生毒性反应;李克强要求问责疫苗案公职人员… 中国疾控中心专家解答疫苗接种有关问题;世卫组织就长春长生疫苗事件发布媒体声明;李克强总理对疫苗事件作出批示…
知识科普 注射未冷藏疫苗不能产生病毒抗体;一类疫苗与二类疫苗知识普及 1989年美国默克公司将乙肝疫苗技术转让给中国;中国疫苗之父汤飞凡;疫苗的工作原理…
事后措施 多地拟将全面实施在预防接种异常反应补偿中全程引入商业保险补偿机制 多地开展疫苗冷链运输检查工作;国家药监局:对全部疫苗进行全链条彻查
Topic Types
地域

话题类型
事件
进展
群众
意见
政府
回应
知识
科普
事后
措施
合计
华北 185 55 186 69 453 948
东北 37 105 62 173 240 617
华东 160 45 124 90 533 952
华中 123 40 103 62 267 595
西南 321 110 196 76 507 1 210
西北 222 95 227 56 400 1 000
华南 185 50 115 166 267 783
合计 1 233 500 1 033 692 2 667 6 125
Popular Weibo Posts Distribution of Different Topic Types
地域

话题类型
事件
进展
群众
意见
政府
回应
知识
科普
事后
措施
华北 0.15/0.21 0.11/0.18 0.18/0.26 0.10/0.13 0.17/0.23
东北 0.03/0.05 0.21/0.17 0.06/0.10 0.25/0.28 0.09/0.39
华东 0.13/0.19 0.09/0.12 0.12/0.33 0.13/0.14 0.20/0.22
华中 0.10/0.11 0.08/0.10 0.10/0.32 0.09/0.12 0.10/0.35
西南 0.26/0.21 0.22/0.24 0.19/0.13 0.11/0.20 0.19/0.22
西北 0.18/0.21 0.19/0.17 0.22/0.22 0.08/0.12 0.15/0.29
华南 0.15/0.23 0.10/0.19 0.11/0.24 0.24/0.15 0.10/0.19
Distribution of Geographical Factors and Topic Factors
话题类型 事件进展 群众意见 政府回应 知识科普 事后措施
p 0.51 0.49 0.51 0.52 0.51
Topic Attitude Values of Microblogging Users
话题类型 长春疫苗事件s1 山东疫苗事件s2
事件进展 0.33 0.26
群众意见 0.48 0.50
政府回应 0.10 0.16
知识科普 0.06 0.05
事后措施 0.03 0.03
The Salience of Topics in Two Vaccine Events
话题因素i 地域因素r 态度值p 长生疫苗
话题热度s1
山东疫苗
话题热度s2
0.05 0.03 0.51 0.33 0.26
Resonance Model Parameters of Event Progress Topics
Resonance of Event Progress Topic
话题因素i 地域因素r 态度值p 长生疫苗
话题热度s1
山东疫苗
话题热度s2
0.17 0.21 0.49 0.48 0.50
Resonance Model Parameters of Public Opinion Topics
Resonance of Public Opinion Topics
话题因素i 地域因素r 态度值p 长生疫苗话题
热度s1
山东疫苗话题
热度s2
0.10 0.06 0.51 0.10 0.16
Resonance Model Parameters of Government Response Topics
Resonance of Government Response Topics
[1] 刘志明, 刘鲁 . 面向突发事件的民众负面情绪生命周期模型[J]. 管理工程学报, 2013,27(1):15-21.
[1] ( Liu Zhiming, Liu Lu . Public Negative Emotion Model in Emergencies Based on Aging Theory[J]. Journal of Industrial Engineering and Engineering Management, 2013,27(1):15-21.)
[2] Surprenant A M . Distinctiveness and Serial Position Effects in Tonal Sequences[J]. Perception & Psychophysics, 2001,63(4):737-745.
[3] Blei D M, Ng A Y, Jordan M I . Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003,3:993-1022.
[4] 邹鸿程 . 微博话题检测与追踪技术研究[D]. 郑州:解放军信息工程大学, 2012.
[4] ( Zou Hongcheng . Research on Microblog Topic Detection and Tracking[D]. Zhengzhou: PLA Information Engineering University, 2012.)
[5] Zheng L, Han K . Multi Topic Distribution Model for Topic Discovery in Twitter [C]// Proceedings of the 2013 IEEE 7th International Conference on Semantic Computing(ICSC), Irvine, CA, USA. IEEE, 2013: 420-425.
[6] Mikolov T, Chen K, Corrado G , et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[7] 朱雪梅 . 基于Word2Vec主题提取的微博推荐[D]. 北京:北京理工大学, 2014.
[7] ( Zhu Xuemei . Micro-blog Recommendation Based on Word2Vec Topic Extraction[D]. Beijing: Beijing Institute of Technology, 2014.)
[8] 缪广寒 . 基于Word2vec和SVM的微博情感挖掘与仿真分析[J]. 电子科技, 2018,31(5):81-83.
[8] ( Miu Guanghan . Emotion Mining and Simulation Analysis of Microblogging Based on Word2vec and SVM[J]. Electronic Science and Technology, 2018,31(5):81-83.)
[9] 李心蕾, 王昊, 刘小敏 , 等. 面向微博短文本分类的文本向量化方法比较研究[J]. 数据分析与知识发现, 2018,2(8):41-50.
[9] ( Li Xinlei, Wang Hao, Liu Xiaomin , et al. Comparing Text Vector Generators for Weibo Short Text Classification[J]. Data Analysis and Knowledge Discovery, 2018,2(8):41-50.)
[10] 孙江华, 张殊 . 现代传播: 中国传媒大学学报[J].现代传播: 中国传媒大学学报, 2015(4):141-143.
[10] ( Sun Jianghua, Zhang Shu . Research on the Influence of Traditional Newspaper Microblogs Based on Main Component Analysis and Cluster Analysis[J]. Modern Communication: Journal of Communication University of China,2015(4):141-143.)
[11] 李情情, 鲁燃, 朱振方 , 等. 基于特定用户角色的热度计算方法及应用[J]. 计算机工程与设计, 2016,37(5):1201-1207.
[11] ( Li Qingqing, Lu Ran, Zhu Zhenfang , et al. Hot Calculation Method and Application Based on Particular User Roles[J]. Computer Engineering and Design, 2016,37(5):1201-1207.)
[12] 赵文清, 侯小可 . 基于词共现图的中文微博新闻话题识别[J]. 智能系统学报, 2012,7(5):444-449.
[12] ( Zhao Wenqing, Hou Xiaoke . News Topic Recognition of Chinese Microblog Based on Word Co-occurrence Graph[J]. CAAI Transactions on Intelligent Systems, 2012,7(5):444-449.)
[13] 王勇, 肖诗斌, 郭跇秀 , 等. 现代图书情报技术[J].现代图书情报技术, 2013(2):57-62.
[13] ( Wang Yong, Xiao Shibin, Guo Yixiu , et al. Research on Chinese Micro-blog Bursty Topics Detection[J]. New Technology of Library and Information Service, 2013(2):57-62.)
[14] 谌志群, 徐宁, 王荣波 . 基于主题演化图的网络论坛热点跟踪[J]. 情报科学, 2013,31(3):147-150.
[14] ( Chen Zhiqun, Xu Ning, Wang Rongbo . BBS Hot Topic Tracking Based on Theme Evolution Graph[J]. Information Science, 2013,31(3):147-150.)
[15] 高继平, 丁堃, 潘云涛 , 等. 多词共现分析方法的实现及其在研究热点识别中的应用[J]. 图书情报工作, 2014,58(24):80-85,98.
[15] ( Gao Jiping, Ding Kun, Pan Yuntao , et al. Implementation of Multiple Words Co-occurrence Analysis and Its Application in the Recognition of Research Hotspots[J]. Library and Information Service, 2014,58(24):80-85,98.)
[16] Menjo T, Yoshikawa M . Trend Prediction in Social Bookmark Service of Bookmark [C]// Proceedings of the 19th International Conference on the World Wide Web. ACM, 2010.
[17] Nikolov S . Trend or No Trend: A Novel Nonparametric Method for Classifying Time Series[D]. Massacysetts Institute of Technology, 2012.
[18] Bandari R, Asur S, Huberman B A . The Pulse of News in Social Media: Forecasting Popularity [C]// Proceedings of the 6th International AAAI Conference on Weblogs & Social Media. 2012.
[19] 方付建, 肖林, 王国华 . 网络舆情热点事件“系列化呈现”问题研究[J]. 情报杂志, 2011,30(2):1-5.
[19] ( Fang Fujian, Xiao Lin, Wang Guohua . Research on Consecutive Hot Events of Network Public Opinion[J]. Journal of Intelligence, 2011,30(2):1-5.)
[20] 兰月新 . 现代图书情报技术[J].现代图书情报技术, 2013(3):51-57.
[20] ( Lan Yuexin . Research on Monitoring Model of Public Opinion Derived for Network Emergencies[J]. New Technology of Library and Information Service,2013(3):51-57.)
[21] 高承实, 陈越, 荣星 , 等. 网络舆情几个基本问题的探讨[J]. 情报杂志, 2011,30(11):52-56.
[21] ( Gao Chengshi, Chen Yue, Rong Xing , et al. Some Basic Problems on Network Opinion Research[J]. Journal of Intelligence, 2011,30(11):52-56.)
[22] 姜胜洪 . 理论月刊[J].理论月刊, 2008(4):34-36.
[22] ( Jiang Shenghong . The Formation and Development of the Hot Spots of Network Public Opinion, the Status Quo and the Guidance of Public Opinion[J]. Theory Monthly,2008(4):34-36.)
[23] 郭小安 . 现代传播: 中国传媒大学学报[J].现代传播: 中国传媒大学学报, 2015(3):123-130.
[23] ( Guo Xiaoan . The Basic Mode and Reflection of the Network Public Opinion Association Overlay: A Comprehensive Analysis Based on Relevant Cases[J]. Modern Communication: Journal of Communication University of China,2015(3):123-130.)
[24] 王国华, 邓海峰, 王雅蕾 , 等. 网络热点事件中的舆情关联问题研究[J]. 情报杂志, 2012,31(7):1-5.
[24] ( Wang Guohua, Deng Haifeng, Wang Yalei , et al. A Study on Public Opinion Relevancy of Network Hot Issues[J]. Journal of Intelligence, 2012,31(7):1-5.)
[25] MATLAB [EB/OL]. [2019-08-07].https://www.mathworks.com/.
[26] 张玉强 . 网络舆情危机的政府适度反应研究[D]. 北京:中央民族大学, 2011.
[26] ( Zhang Yuqiang . Study on the Government’s Moderate Response to the Crisis of Network Public Opinion[D]. Beijing: Minzu University of China, 2011.)
[27] 杜诗雨, 齐佳音 . 基于主成分分析的微博话题影响指数评价研究[J]. 情报杂志, 2014,33(5):129-135.
[27] ( Du Shiyu, Qi Jiayin . Research on the Evaluation of Microblog Topic Influence Index Based on PCA Methods[J]. Journal of Intelligence, 2014,33(5):129-135.)
[28] Benzi R, Sutera A, Vulpiani A . Journal of Physics A: Mathematical and General[J]. Journal of Physics A: Mathematical and General, 1981(14):L453-L457.
[29] Benzi R, Parisi G, Sutera A , et al. Theory of Stochastic Resonance in Climatic Change[J]. SIAM Journal on Applied Mathematics, 1983,43(3):565-578.
[30] Langevin P . Sur La Théorie Du Mouvement Brownien[J]. Comptes Rendus de l’Académie des Sciences, 1908,146:530-533.
[31] R 语言 LDA 可视化包 LDAvis[EB/OL].[2019-08-07].https://github.com/cpsievert/LDAvis.
[31] ( A LDA Visualization Package in R[EB/OL].[2019-08-07].https://github.com/cpsievert/LDAvis.)
[32] Sievert C, Shirley K E . LDAvis: A Method for Visualizing and Interpreting Topics [C]// Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces. 2014.
[33] 肖挺, 刘华 . 服务业生产效率异质性对城乡收入差距影响研究[J]. 管理科学, 2013,26(4):103-112.
[33] ( Xiao Ting, Liu Hua . Empirical Study on the Impacts of Productivity Heterogeneity in Chinese Service Industry on the Urban-rural Income Gap[J]. Journal of Management Science, 2013,26(4):103-112.)
[34] BosonNLP[EB/OL].[2019-08-07].https://bosonnlp.com/.
[35] 廖瑞丹 . 基于随机共振模型的网络舆情共振现象研究[D]. 南京:南京理工大学, 2017.
[35] ( Liao Ruidan . Study on Network Public Opinion Resonance Based on Stochastic Resonance Model[D]. Nanjing: Nanjing University of Science & Technology, 2017.)
[36] 李倩倩, 黄远, 姜景 , 等. 中国网络社会治理的舆论指数[J]. 中国科学院院刊, 2015,30(1):90-96.
[36] ( Li Qianqian, Huang Yuan, Jiang Jing , et al. Opinion Index of Social Governance on Chinese Network[J]. Bulletin of the Chinese Academy of Sciences, 2015,30(1):90-96.)
[37] 中国应急服务网[EB/OL].(2016-01-01). [2019-05-01]. http://www.52safety.com/yjsgzh/index.jhtml.
[37] (China Emergency Services Platform[EB/OL].(2016-01-01). [2019-05-01]. http://www.52safety.com/yjsgzh/index.jhtml.)
[38] Qu Y, Wu P F, Wang X . Online Community Response to Major Disaster: A Study of Tianya Forum in the 2008 Sichuan Earthquake [C]// Proceedings of the 42nd Hawaii International Conference on System Sciences. 2009.
[39] Qu Y, Huang C, Zhang P , et al. Microblogging After a Major Disaster in China: A Case Study of the 2010 Yushu Earthquake [C]// Proceedings of the ACM 2011 Conference on Computer Supported Cooperative Work, Hangzhou, China. DBLP, 2011: 25-34.
[1] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[2] Lu An,Yanping Liang. Selection of Users’ Behaviors Towards Different Topics of Microblog on Public Health Emergencies[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[3] Zhe Hu,Xianjin Zha,Yalan Yan. Interactive Behaviors of Online Health Community Users in Emergency[J]. 数据分析与知识发现, 2019, 3(12): 10-20.
[4] Gang Li,Sijing Chen,Jin Mao,Yansong Gu. Spatio-Temporal Comparison of Microblog Trending Topics on Natural Disasters[J]. 数据分析与知识发现, 2019, 3(11): 1-15.
[5] Dongbo Wang,Yi Wu,Wenhao Ye,Ruilun Liu. Extracting Events of Food Safety Emergencies with Characteristics Knowledge[J]. 数据分析与知识发现, 2017, 1(3): 54-61.
[6] Wu Peng,Jin Beibei,Qiang Shaohua. A BDI-Agent Based Model for Public Opinion Crisis Response[J]. 现代图书情报技术, 2016, 32(7-8): 32-41.
[7] Fan Bo. The Computation Method for Key Spatial Information in Emergency Information System[J]. 现代图书情报技术, 2011, 27(9): 54-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn