Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (9): 41-55    DOI: 10.11925/infotech.2096-3467.2020.0145
Current Issue | Archive | Adv Search |
Data Governance and Domain Ontology of Regional Public Security
Zeng Zhen1,2,3(),Li Gang4,Mao Jin3,4,Chen Jinghao3,5
1Guizhou Key Laboratory of Big Data Statistical Analysis, Guizhou University of Finance and Economics, Guiyang 550000, China
2School of Information, Guizhou University of Finance and Economics, Guiyang 550000, China
3Big Data Institute, Wuhan University, Wuhan 430072, China
4Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
5School of Public Policy and Management, Guangxi University, Nanning 530004, China
Download: PDF (2129 KB)   HTML ( 3
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper tries to construct a data governance model and domain ontology for regional public security, aiming to improve the applications of data governance.[Methods] We constructed our model based on the theory of linked data, and used public ontology (e.g., DACT and ODRL2.2) to manage public security data assets. Then, we extended the EventKG ontology for the process logic of public security. Third, we modified the PROV ontology for the source relationship among data assets and models. Fourth, we identified the relationship between data governance and process based on concepts and organizations. Finally, we constructed the ontology for the whole process of data governance.[Results] Our domain ontology was built with six scalable and reusable public ontologies. The model’s relationship richness reached 0.773 which indicated good inter-class ties. The proposed model described the complex relations and process of data governance for public security. Based on the ontology, we created knowledge graph and applications for one prefecture-level city.[Limitations] More reseach is needed to expand our new model to cyber public security.[Conclusions] The proposed model could improve the data governance in public security research and practice.

Key wordsRegional Public Security      Data Governance      Public Security Process      Ontology     
Received: 27 February 2020      Published: 14 October 2020
ZTFLH:  TP393  
Corresponding Authors: Zeng Zhen     E-mail: tomisacat@live.cn

Cite this article:

Zeng Zhen,Li Gang,Mao Jin,Chen Jinghao. Data Governance and Domain Ontology of Regional Public Security. Data Analysis and Knowledge Discovery, 2020, 4(9): 41-55.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2020.0145     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2020/V4/I9/41

Stakeholders and Demand Analysis
The Composition and Target of Domain Ontology
Public Security Data Governance Ontology Model
Public Security Data Governance Ontology Instance
Public Security Process Ontology Model
Generated Class and Property Instance in Process Ontology Based on Data Governance Information Resources
Ontology Instance in Public Security Process
Conception Linked Between Public Security Data Governance Ontology and Process Ontology
Framework of Knowledge Graph and Application Service Based on Reginal Public Security Data Governance and Process Ontology
Visual Application Service of Regional Public Security Data Governance
Visual Application Service of Regional Public Security Process Analysis
[1] 沙勇忠, 陆莉. 公共安全数据管理:新领域与新方向[J]. 图书与情报, 2019(4):1-12.
[1] ( Sha Yongzhong, Lu Li. Public Safety Data Management: New Field and Direction[J]. Library & Information, 2019(4):1-12.)
[2] 夏义堃. 试论基层政府数据治理模式的选择:吴中模式的建构与启示[J]. 电子政务, 2019(2):17-26.
[2] ( Xia Yikun. Analysis on the Data Governance Model Selection of Local Government: The Construction and Inspiration of Wuzhong Model[J]. E-Government, 2019(2):17-26.)
[3] Khatri V, Brown C V. Designing Data Governance[J]. Communications of the ACM, 2010,53(1):148-152.
[4] 陈琳. 精简、精准与智慧政府数据治理的三个重要内涵[J]. 国家治理, 2016(27):28-39.
[4] ( Chen Lin. Three Important Connotations of Streamlined Accurate and Intelligent Government of Data Governance[J]. Governance, 2016(27):28-39.)
[5] Data Catalog Vocabulary (DCAT) - Version 2[EB/OL]. [2019-12-19]. https://www.w3.org/TR/vocab-dcat-2/.
[6] DCAT Application Profile for Data Portals in Europe [EB/OL]. [2019-12-30]. https://joinup.ec.europa.eu/solution/dcat-application-profile-data-portals-europe/news/dcat-ap-major-release.
[7] PROV-Overview [EB/OL]. [2019-01-02]. https://www.w3.org/TR/prov-overview/.
[8] ODRL Information Model 2.2[EB/OL]. [2019-02-22]. https://www.w3.org/TR/odrl-model/.
[9] Cuno S, Bruns L, Tcholtchev N, et al. Data Governance and Sovereignty in Urban Data Spaces Based on Standardized ICT Reference Architectures[J]. Data, 2019,4(1):16.
doi: 10.3390/data4010016
[10] Casanovas P, Palmirani M, Peroni S, et al. Semantic Web for the Legal Domain: The Next Step[J]. Semantic Web, 2016,7(3):213-227.
doi: 10.3233/SW-160224
[11] 翟军, 陶晨阳, 龙莎, 等. 欧盟开放数据的元数据标准DCAT-AP及启示[J]. 情报科学, 2019,37(2):102-110.
[11] ( Zhai Jun, Tao Chenyang, Long Sha, et al. Metadata Standards DCAT-AP of Open Government Data in EU and Its Enlightenment[J]. Information Science, 2019,37(2):102-110.)
[12] Erickson J S, Viswanathan A, Shinavier J, et al. Open Government Data: A Data Analytics Approach[J]. IEEE Intelligent Systems, 2013,28(5):19-23.
[13] 于梦月, 翟军, 林岩. 我国地方政府开放数据的核心元数据研究[J]. 情报杂志, 2016,35(12):98-104.
[13] ( Yu Mengyue, Zhai Jun, Lin Yan. Open Data Core Metadata Research in Chinese Local Governments[J]. Journal of Intelligence, 2016,35(12):98-104.)
[14] 黄如花, 林焱. 国外开放政府数据描述规范的调查与分析[J]. 图书情报工作, 2017,61(20):37-52.
[14] ( Huang Ruhua, Lin Yan. Investigation and Analysis of the Norms of Open Government Data Description of Foreign Countries[J]. Library and Information Service, 2017,61(20):37-52.)
[15] 陈红玉, 翟军, 袁长峰, 等. 开放政府数据的溯源元数据研究及应用[J]. 情报杂志, 2017,36(6):148-155.
[15] ( Chen Hongyu, Zhai Jun, Yuan Changfeng, et al. Provenance Metadata Research of Open Government Data and Application Discussion[J]. Journal of Intelligence, 2017,36(6):148-155.)
[16] 姜璐. 基于ODRL的服务数据资源权利及描述标准的研究[D]. 北京:北京邮电大学, 2019.
[16] ( Jiang Lu. Research on Service Data Resource Rights and Description Standards Based on ODRL[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.)
[17] 蔡芳霖, 陈曦, 薛龙, 等. 基于本体和知识推理的突发事件虚拟案例研究[J]. 华中科技大学学报(自然科学版), 2015(Z1):93-96.
[17] ( Cai Fanglin, Chen Xi, Xue Long, et al. Research on Generation of Emergency Virtual Case Based on Ontology and Knowledge Reasoning[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015(Z1):93-96.)
[18] 顾捷晔. 暴雨洪涝灾害链本体构建与推理方法[D]. 武汉:武汉大学, 2017.
[18] ( Gu Jieye. Construction and Reasoning Method of the Rainstorm Flood Chain Ontology[D]. Wuhan: Wuhan University, 2017.)
[19] 郭正斌. 面向社会安全事件的知识图谱构建方法研究[D]. 北京:北京信息科技大学, 2018.
[19] ( Guo Zhengbin. Research on the Construction Method of Knowledge Graph for Social Security Events[D]. Beijing: Beijing Information Science & Technology University, 2018.)
[20] Gaur M, Shekarpour S, Gyrard A, et al. Empathi: An Ontology for Emergency Managing and Planning About Hazard Crisis[C] //Proceeding of the 13th International Conference on Semantic Computing (ICSC). IEEE, 2019: 396-403.
[21] Van Hage W R, Malaisé V, Segers R, et al. Design and Use of the Simple Event Model (SEM)[J]. Journal of Web Semantics, 2011,9(2):128-136.
doi: 10.1016/j.websem.2011.03.003
[22] Gottschalk S, Demidova E. EventKG: A Multilingual Event-centric Temporal Knowledge Graph[C] //Proceedings of European Semantic Web Conference. Springer, Cham, 2018: 272-287.
[23] Velikova M, Novák P, Huijbrechts B, et al. An Integrated Reconfigurable System for Maritime Situational Awareness[C] //Proceedings of the 21st European Conference on Artificial Intelligence. 2014: 1197-1202.
[24] Quaresma P, Nogueira V B, Raiyani K, et al. Event Extraction and Representation: A Case Study for the Portuguese Language[J]. Information, 2019,10(6):205.
doi: 10.3390/info10060205
[25] Navas-Loro M, Santos C. Events in the Legal Domain: First Impressions[C] //Proceedings of the 2nd Workshop on Technologies for Regulatory Compliance Co-located with the 31st International Conference on Legal Knowledge and Information Systems. 2018: 45-57.
[26] Mazimwe A, Hammouda I, Gidudu A. Ontology Design Patterns for Representing Knowledge in the Disaster Risk Domain[C] //Proceedings of the 28th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises. IEEE, 2019: 283-288.
[27] 马广惠, 安小米, 宋懿. 业务驱动的政府大数据平台数据治理[J]. 情报资料工作, 2018(1):21-27.
[27] ( Ma Guanghui, An Xiaomi, Song Yi. Business-driven Government Big Data Platform Data Governance[J]. Information and Documentation Services, 2018(1):21-27.)
[28] Daraio C, Lenzerini M, Leporelli C, et al. The Advantages of an Ontology-Based Data Management Approach: Openness, Interoperability and Data Quality[J]. Scientometrics, 2016,108(1):441-455.
doi: 10.1007/s11192-016-1913-6
[29] DeStefano R J, Tao L X, Gai K K. Improving Data Governance in Large Organizations Through Ontology and Linked Data[C] //Proceedings of the 3rd International Conference on Cyber Security and Cloud Computing (CSCloud). IEEE, 2016: 279-284.
[30] Daraio C, Lenzerini M, Leporelli C, et al. Data Integration for Research and Innovation Policy: An Ontology-Based Data Management Approach[J]. Scientometrics, 2016,106(2):857-871.
doi: 10.1007/s11192-015-1814-0
[31] Kasrin N, Qureshi M, Steuer S, et al. Semantic Data Management for Experimental Manufacturing Technologies[J]. Datenbank-Spektrum, 2018,18(1):27-37.
doi: 10.1007/s13222-018-0274-0
[32] 阿里叶·司康德. 新疆城市社会安全事件协同治理研究[D]. 北京:中央财经大学, 2016.
[32] ( Aliya· Eskanda. Cooperative Governance Research of Xinjiang Urban Social Security Events[D]. Beijing: Central University of Finance and Economics, 2016.)
[33] 赵汗青. 中国现代城市公共安全管理研究[D]. 长春:东北师范大学, 2012.
[33] ( Zhao Hanqing. Study of China’s Modern City Public Safety Management[D]. Changchun: Northeast Normal University, 2012.)
[34] 李玉洁. 大数据背景下临沂市公共安全管理模式研析[D]. 济南:山东师范大学, 2019.
[34] ( Li Yujie. Analysis of Linyi Public Security Management Mode Under the Background of Big Data[D]. Ji’nan: Shandong Normal University, 2019.)
[35] 门理想. 地方政府数据治理机构研究:组建方式与职能界定[J]. 兰州学刊, 2019(11):146-156.
[35] ( Men Lixiang. Research on Data Governance Institution of Local Government: Methods of Formation and Definition of Functions[J]. Lanzhou Academic Journal, 2019(11):146-156.)
[36] 安小米, 白献阳, 洪学海. 政府大数据治理体系构成要素研究——基于贵州省的案例分析[J]. 电子政务, 2019(2):2-16.
[36] ( An Xiaomi, Bai Xianyang, Hong Xuehai. Research on the Elements of Government Big Data Governance System-Based on the Case Study of Guizhou Province[J]. E-Government, 2019(2):2-16.)
[37] 马亮. 大数据治理:地方政府准备好了吗?[J]. 电子政务, 2017(1):77-86.
[37] ( Ma Liang. Big Data Government:Are Local Government Ready?[J]. E-Government, 2017(1):77-86.)
[38] 马费成. 信息管理学基础[M]. 第2版. 武汉: 武汉大学出版社, 2013: 23-24.
[38] ( Ma Feicheng. Fundamentals of Information Management[M]. The 2nd Edition. Wuhan: Wuhan University Press, 2013: 23-24.)
[39] 张晓娟, 谭婧. 我国省级政府数据开放平台元数据质量评估研究[J]. 电子政务, 2019(3):58-71.
[39] ( Zhang Xiaojuan, Tan Jing. Research on Metadata Quality Evaluation of Provincial Government Data Open Platform in China[J]. E-Government, 2019(3):58-71.)
[40] Doddington G R, Mitchell A, Przybocki M A, et al. The Automatic Content Extraction (ACE) Program-Tasks, Data, and Evaluation[C] // Proceedings of the 4th International Conference on Language Resources and Evaluation. 2004.
[41] 魏永忠. 论我国城市社会安全指数的预警等级与指标体系[J]. 中国行政管理, 2007(2):89-94.
[41] ( Wei Yongzhong. Research on the Early Warning Level and Index System of Urban Social Security Index in China[J]. Chinese Public Administration, 2007(2):89-94.)
[42] 何浏. 《中华人民共和国突发事件应对法》的制定和完善——基于多源流理论的政策分析[J]. 法制与社会, 2014(22):270-272.
[42] ( He Liu. Formulation and Improvement of Emergency Response Law of the People’s Republic of China-Based on Multi-source Flow Theory Policy Analysis[J]. Legal System and Society, 2014(22):270-272.)
[43] 程琳. 加快信息网络法治建设维护网络社会安全秩序[J]. 中国人民公安大学学报(社会科学版), 2013(1):1-9.
[43] ( Cheng Lin. Speeding up the Construction of Information Network Law and Maintaining the Security Order of Network Society[J]. Journal of People’s Public Security University of China (Social Sciences Edition), 2013(1):1-9.)
[44] The Organization Ontology [EB/OL]. [2019-03-20]. https://www.w3.org/TR/vocab-org/.
[45] Poveda-Villalón M, Gómez-Pérez A, Suárez-Figueroa M C. OOPS!(Ontology Pitfall Scanner!): An On-line Tool for Ontology Evaluation[J]. International Journal on Semantic Web and Information Systems (IJSWIS), 2014,10(2):7-34.
doi: 10.4018/IJSWIS
[46] Kehagias D D, Papadimitriou I, Hois J, et al. A Methodological Approach for Ontology Evaluation and Refinement[C] //Proceedings of ASK-IT Final Conference. 2008: 1-13.
[47] Tartir S, Arpinar I B. Ontology Evaluation and Ranking Using OntoQA[C] //Proceedings of International Conference on Semantic Computing (ICSC 2007). IEEE, 2007: 185-192.
[1] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[2] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[4] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[5] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[8] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[9] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[10] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[11] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[12] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[13] Wu Dan,Liu Chang,Li Yi. Changing Sentiments of Pedestrian Navigation System Users[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
[14] Liu Jian,Bi Qiang,Liu Qingxu,Wang Fu. New Content Recommendation Service of Digital Literature[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[15] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn