Please wait a minute...
Data Analysis and Knowledge Discovery  2020, Vol. 4 Issue (10): 1-13    DOI: 10.11925/infotech.2096-3467.2020.0383
Current Issue | Archive | Adv Search |
Domain-Specific Event Graph Construction Methods:A Review
Wang Yi1,Shen Zhe1,Yao Yifan1,Cheng Ying1,2()
1School of Information Management, Nanjing University, Nanjing 210023, China
2School of Chinese Language and Literature, Shandong Normal University, Jinan 250014, China
Download: PDF (812 KB)   HTML ( 5
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper reviews construction methods for domain-specific event graphs, aiming to facilitate future research.[Coverage] We searched “Event Graph”, “Event extraction” and “Event relation” with Web of Science and Google Scholar, then retrieved a total of 61 representative literature.[Methods] We summarized the definition, construction process and extraction methods with literature review. Then, we discussed the rule-based, feature learning based, and neural network-based extraction techniques. Finally, we analyzed their feature selection procedures, model architecture and experiment results.[Results] Refer to the general knowledge graph construction methods, we proposed a process model that include trigger argument and relation recognition. We briefly described on construction standard in structure, domain, event form, inference ability and temporal relations. In practice, we found that Ontology reuse is necessary, and neural network is the best choice.[Limitations] We did not use the same dataset to evaluate all methods.[Conclusions] We proposed knowledge-boosted methods, transfer learning and cognitive models for future studies.

Key wordsDomain-Specific Event Graph      Knowledge Graph      Event Extraction      Information Extraction     
Received: 05 May 2020      Published: 17 July 2020
ZTFLH:  G350  
Corresponding Authors: Cheng Ying     E-mail: Chengy@nju.edu.cn

Cite this article:

Wang Yi,Shen Zhe,Yao Yifan,Cheng Ying. Domain-Specific Event Graph Construction Methods:A Review. Data Analysis and Knowledge Discovery, 2020, 4(10): 1-13.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2020.0383     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2020/V4/I10/1

Domain-Specific Graph Construction Process
Event Graph Relations
Example of Event Extraction
方法分类 方法 学习方式 事件触发词识别 事件要素识别
P R F1 P R F1
基于特征的方法 Li’s baseline[61] 联合学习 74.5% 59.1% 65.9% 74.1% 37.4% 49.7%
基于特征的方法 Liao’s cross-event[43] 管道模型 68.7% 68.9% 68.8% 50.9% 49.7% 50.3%
基于特征的方法 Hong’s cross-entity[42] 管道模型 72.9% 64.3% 68.3% 53.4% 52.9% 53.1%
基于神经网络的方法 CNN[46] 管道模型 72.5% 43.1% 66.3% 51.6% 36.6% 48.9%
基于神经网络的方法 DMCNN[46] 管道模型 74.6% 50.9% 69.1% 54.6% 48.7% 53.5%
基于神经网络的方法 JRNN[52] 联合模型 66.0% 73.0% 69.3% 61.4% 64.2% 62.8%
Performance of Event Extraction Model in ACE Dataset
方法 算法 关系类型 R P F1
KERNEL-method[55] Voted Perceptron Person-Affiliation 81.62% 90.05% 85.61%
KERNEL-method[55] SVM Person-Affiliation 82.73% 91.32% 86.80%
Joint Extraction[57] Hybrid Neural Network Live_In/Work_For 78.30% 83.20% 80.60%
Event Co-occurrence Network[60] Co-occurrence Network Casual/Follow Accompany/Taxonomic 85.20% 89.60% 87.30%
Event-Argument Relation Extraction[54] SVM Event-Argument - - 69.70%
Long-Distance[59] Linear+PTK Time-Event 64.00% 60.90% 62.30%
Temporal Relation Extraction[56] CNN Time-Event 68.10% 72.70% 70.30%
Temporal Relation Extraction[56] LSTM Time-Event 66.00% 69.80% 67.90%
Joint Reasoning[58] Joint Learning Temporal/Causal 74.40% 69.30% 71.80%
Event Relation Extraction Performance
[1] Erxleben F, Günther M, Krötzsch M, et al. Introducing Wikidata to the Linked Data Web[C]//Proceedings of the 13th International Semantic Web Conference. Springer, Cham, 2014: 50-65.
[2] Lehmann J, Isele R, Jakob M, et al. DBpedia-A Large-Scale, Multilingual Knowledge Base Extracted from Wikipedia[J]. Semantic Web, 2015,6(2):167-195.
doi: 10.3233/SW-140134
[3] Dong X, Gabrilovich E, Heitz G, et al. Knowledge Vault: A Web-Scale Approach to Probabilistic Knowledge Fusion[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2014: 601-610.
[4] Herrmannova D, Knoth P. An Analysis of the Microsoft Academic Graph[J]. D-Lib Magazine, 2016,22(9/10). DOI: 10.1045/september2016-herrmannova.
[5] Leetaru K, Schrodt P A. GDELT: Global Data on Events, Location, and Tone, 1979-2012[C]// Proceedings of the 2013 Annual Meeting of the International Studies Association. Citeseer, 2013,2(4):1-49.
[6] Berners-Lee T, Hendler J, Lassila O. The Semantic Web[J]. Scientific American, 2001,284(5):34-43.
[7] Ji S, Pan S, Cambria E, et al. A Survey on Knowledge Graphs: Representation, Acquisition and Applications[OL]. arXiv Preprint, arXiv:2002.00388.
[8] Bonatti P A, Decker S, Polleres A, et al. Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web(Dagstuhl Seminar 18371)[J]. Dagstuhl Reports, 2019,8(9):29-111.
[9] Yan J, Wang C, Cheng W, et al. A Retrospective of Knowledge Graphs[J]. Frontiers of Computer Science, 2018,12(1):55-74.
doi: 10.1007/s11704-016-5228-9
[10] Wu T, Qi G, Li C, et al. A Survey of Techniques for Constructing Chinese Knowledge Graphs and Their Applications[J]. Sustainability, 2018,10(9):3245.
doi: 10.3390/su10093245
[11] Paulheim H. Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods[J]. Semantic Web, 2017,8(3):489-508.
doi: 10.3233/SW-160218
[12] Ehrlinger L, Wöß W. Towards a Definition of Knowledge Graphs[C]//Joint Proceedings of the Posters and Demos Track of 12th International Conference on Semantic Systems and the 1st International Workshop on Semantic Change & Evolving Semantics. 2016.
[13] Akerkar R, Sajja P. Knowledge-based Systems[M]. Jones & Bartlett Publishers, 2010.
[14] Deng J, Qiao F, Li H, et al. An Overview of Event Extraction from Twitter[C]//Proceedings of the 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. IEEE, 2015: 251-256.
[15] Kejriwal M. Domain-Specific Knowledge Graph Construction[M]. Springer International Publishing, 2019.
[16] Lautenschlager J, Shellman S, Ward M. ICEWS Events and Aggregations[OL]. Advanced Technology Laboratories. http://data.nber.org/ens/feldstein/NBER_Sources/ENS%20Conference% 20Sources/2016/Predicting%20Conflict%20Via%20Machine%20Learning/ICEWS%20(Lockheed%20Martin)/Dictionaries/ICEWS%20Events%20and%20Aggregations.pdf.
[17] Sadeghian A, Rodriguez M, Wang D Z, et al. Temporal Reasoning over Event Knowledge Graphs[C]//Proceedings of the 2018 Workshop on Knowledge Base Construction, Reasoning and Mining. 2018.
[18] Li Z, Ding X, Liu T. Constructing Narrative Event Evolutionary Graph for Script Event Prediction[OL]. arXiv Preprint, arXiv:1805.05081.
[19] Rospocher M, van Erp M, Vossen P, et al. Building Event-Centric Knowledge Graphs from News[J]. Journal of Web Semantics, 2016,37/38:132-151.
doi: 10.1016/j.websem.2015.12.004
[20] Noy N F, McGuinness D L. Ontology Development 101: A Guide to Creating Your First Ontology[R]. Stanford Knowledge Systems Laboratory, 2001.
[21] Fabian M S, Gjergji K, Gerhard W. YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia[C]// Proceedings of the 16th International World Wide Web Conference. 2007: 697-706.
[22] van Hage W R, Malaisé V, Segers R, et al. Design and Use of the Simple Event Model (SEM)[J]. Journal of Web Semantics, 2011,9(2):128-136.
doi: 10.1016/j.websem.2011.03.003
[23] Fokkens A, van Erp M, Vossen P, et al. GAF: A Grounded Annotation Framework for Events[C]//Proceedings of the 1st Workshop on Events: Definition, Detection, Coreference, and Representation. 2013: 11-20.
[24] Bejan C A, Harabagiu S M. A Linguistic Resource for Discovering Event Structures and Resolving Event Coreference[C]// Proceedings of the 6th International Conference on Language Resources and Evaluation. 2008.
[25] Cybulska A, Vossen P. Using a Sledgehammer to Crack a Nut? Lexical Diversity and Event Coreference Resolution[C]// Proceedings of the 9th International Conference on Language Resources and Evaluation. 2014: 4545-4552.
[26] Baker C F, Fillmore C J, Lowe J B. The Berkeley FrameNet Project[C]// Joint Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and the 17th International Conference on Computational Linguistics. Association for Computational Linguistics, 1998: 86-90.
[27] Segers R, Vossen P T J M, Rospocher M, et al. ESO: A Frame Based Ontology for Events and Implied Situations[A]//Maplex[M]. Vrije Universiteit Amsterdam, 2015.
[28] Piskorski J, Tanev H, Atkinson M, et al. Online News Event Extraction for Global Crisis Surveillance[A]// Transactions on Computational Collective Intelligence V[M]. Springer, Berlin, Heidelberg, 2011: 182-212.
[29] The ACE 2005 (ACE05) Evaluation Plan Evaluation of the Detection and Recognition of ACE[R]. The ACE 2005 Evaluation Plan, 2005.
[30] Fellbaum C. WordNet: An Electronic Lexical Database and Some of Its Applications[M]. MIT Press, 1998.
[31] Borsje J, Hogenboom F, Frasincar F. Semi-Automatic Financial Events Discovery Based on Lexico-Semantic Patterns[J]. International Journal of Web Engineering and Technology, 2010,6(2):115-140.
doi: 10.1504/IJWET.2010.038242
[32] Yakushiji A, Tateisi Y, Miyao Y, et al. Event Extraction from Biomedical Papers Using a Full Parser[J]. Pacific Symposium Biocomputing, 2001: 408-419. DOI: 10.1142/9789814447362_0040.
[33] Nishihara Y, Sato K, Sunayama W. Event Extraction and Visualization for Obtaining Personal Experiences from Blogs[C]// Proceedings of the 2009 Symposium on Human Interface. Springer, Berlin, Heidelberg, 2009: 315-324.
[34] Hung S H, Lin C H, Hong J S. Web Mining for Event-Based Commonsense Knowledge Using Lexico-Syntactic Pattern Matching and Semantic Role Labeling[J]. Expert Systems with Applications, 2010,37(1):341-347.
doi: 10.1016/j.eswa.2009.05.060
[35] Stevenson M, Greenwood M A. A Semantic Approach to IE Pattern Induction[C]// Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 2005: 379-386.
[36] Huang R, Riloff E. Bootstrapped Training of Event Extraction Classifiers[C]//Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics. Association for Computational Linguistics, 2012: 286-295.
[37] Bronstein O, Dagan I, Li Q, et al. Seed-Based Event Trigger Labeling: How Far can Event Descriptions Get Us?[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015: 372-376.
[38] Yangarber R, Grishman R, Tapanainen P, et al. Automatic Acquisition of Domain Knowledge for Information Extraction[C]//Proceedings of the 18th Conference on Computational Linguistics. Association for Computational Linguistics, 2000: 940-946.
[39] Grishman R, Westbrook D, Meyers A. 2005 NYU’s English ACE 2005 System Description[OL]. https://nlp.cs.nyu.edu/publication/papers/ACE05-NYUEnglishSysDescrDec10.pdf.
[40] Li Q. Joint Information Extraction[D]. New York: Rensselaer Polytechnic Institute, 2015.
[41] Patwardhan S, Riloff E. A Unified Model of Phrasal and Sentential Evidence for Information Extraction[C]//Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, 2009: 151-160.
[42] Hong Y, Zhang J, Ma B, et al. Using Cross-Entity Inference to Improve Event Extraction[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2011: 1127-1136.
[43] Liao S, Grishman R. Using Document Level Cross-Event Inference to Improve Event Extraction[C]//Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2010: 789-797.
[44] Ji H, Grishman R. Refining Event Extraction Through Cross-Document Inference[C]//Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. 2008: 254-262.
[45] Nguyen T H, Grishman R. Modeling Skip-Grams for Event Detection with Convolutional Neural Networks[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. 2016: 886-891.
[46] Chen Y, Xu L, Liu K, et al. Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics. 2015: 167-176.
[47] Niklaus C, Cetto M, Freitas A, et al. A Survey on Open Information Extraction[C]//Proceedings of the 27th International Conference on Computational Linguistics. 2018: 3866-3878.
[48] Peng H, Li J, Gong Q, et al. Fine-grained Event Categorization with Heterogeneous Graph Convolutional Networks[OL]. arXiv Preprint, arXiv:1906.04580.
[49] Jagannatha A N, Yu H. Bidirectional RNN for Medical Event Detection in Electronic Health Records[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 473-482.
[50] Duan S, He R, Zhao W. Exploiting Document Level Information to Improve Event Detection via Recurrent Neural Networks[C]//Proceedings of the 8th International Joint Conference on Natural Language Processing. 2017: 352-361.
[51] Zhao Y, Jin X, Wang Y, et al. Document Embedding Enhanced Event Detection with Hierarchical and Supervised Attention[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018: 414-419.
[52] Nguyen T H, Cho K, Grishman R. Joint Event Extraction via Recurrent Neural Networks[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2016: 300-309.
[53] Devlin J, Chang M W, Lee K, et al. Bert: Pre-training of Deep Bidirectional Transformers for Language Understanding[OL]. arXiv Preprint, arXiv:1810.04805.
[54] Yoshikawa K, Riedel S, Hirao T, et al. Coreference Based Event-Argument Relation Extraction on Biomedical Text[J]. Journal of Biomedical Semantics, 2011, 2(S5): Article No. S6.
doi: 10.1186/2041-1480-2-S4-S1 pmid: 21995847
[55] Zelenko D, Aone C, Richardella A. Kernel Methods for Relation Extraction[J]. Journal of Machine Learning Research, 2003,3:1083-1106.
[56] Dligach D, Miller T, Lin C, et al. Neural Temporal Relation Extraction[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. 2017: 746-751.
[57] Zhou P, Zheng S, Xu J, et al. Joint Extraction of Multiple Relations and Entities by Using a Hybrid Neural Network[A]// Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big Data[M]. Springer, Cham, 2017: 135-146.
[58] Ning Q, Feng Z, Wu H, et al. Joint Reasoning for Temporal and Causal Relations[OL]. arXiv Preprint, arXiv: 1906.04941.
[59] Moschitti A, Patwardhan S, Welty C. Long-Distance Time-Event Relation Extraction[C]// Proceedings of the 6th International Joint Conference on Natural Language Processing. 2013: 1330-1338.
[60] Liao T, Sun P, Liu Z. Event Relations Extraction Based on Event Co-occurrence Network[C]//Proceedings of the 8th International Symposium on Computational Intelligence and Design (ISCID). IEEE, 2015: 610-613.
[61] Li Q, Ji H, Huang L. Joint Event Extraction via Structured Prediction with Global Features[C]//Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013: 73-82.
[1] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[2] Lv Huakui,Hong Liang,Ma Feicheng. Constructing Knowledge Graph for Financial Equities[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[3] Li Jiaquan,Li Baoan,You Xindong,Lü Xueqiang. Computing Similarity of Patent Terms Based on Knowledge Graph[J]. 数据分析与知识发现, 2020, 4(10): 104-112.
[4] Tao Yue,Yu Li,Zhang Runjie. Active Learning Strategies for Extracting Phrase-Level Topics from Scientific Literature[J]. 数据分析与知识发现, 2020, 4(10): 134-143.
[5] Haici Yang,Jun Wang. Visualizing Knowledge Graph of Academic Inheritance in Song Dynasty[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[6] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[7] Chengzhi Zhang,Zheng Li. Extracting Sentences of Research Originality from Full Text Academic Articles[J]. 数据分析与知识发现, 2019, 3(10): 12-18.
[8] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[9] Jiying Hu,Jing Xie,Li Qian,Changlei Fu. Constructing Big Data Platform for Sci-Tech Knowledge Discovery with Knowledge Graph[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[10] Mu Dongmei,Jin Shan,Ju Yuanhong. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[11] Shen Zhihong,Yao Chang,Hou Yanfei,Wu Linhuan,Li Yuepeng. Big Linked Data Management: Challenges, Solutions and Practices[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[12] Jiang Ying,Zhang Jing,Zhu Lingxuan. Extracting and Visualizing Knowledge Graph Schema from Linked Data with Cytoscape Platform[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[13] Yufeng Duan,Sisi Huang. Information Extraction from Chinese Plant Species Diversity Description Text[J]. 现代图书情报技术, 2016, 32(1): 87-96.
[14] Liu Wei, Wang Xing, Song Peiyan. A Noise Cleaning Method for Synonym Extraction Results[J]. 现代图书情报技术, 2015, 31(6): 64-70.
[15] Jiang Chuntao. Automatic Annotation of Bibliographical References in Chinese Patent Documents[J]. 现代图书情报技术, 2015, 31(10): 81-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn