Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (5): 127-132    DOI: 10.11925/infotech.2096-3467.2020.0882
Current Issue | Archive | Adv Search |
Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm
Lu Linong1,2(),Zhu Zhongming1,Zhang Wangqiang1,Wang Xiaochun2
1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2CASWIZ Information Consulting Co., Ltd., Lanzhou 730000, China
Download: PDF (1037 KB)   HTML ( 8
Export: BibTeX | EndNote (RIS)      

[Objective] This study optimizes the Lingo3G algorithm with the help Solr scoring rules, aiming to realize the cross-database knowledge integration and knowledge fingerprint services of the institutional repository. [Methods] First, we analyzed user needs, and constructed a functional framework for knowledge integration analysis and visualization. Then, we selected key technologies and methods to build a platform, and explored the feasibility of knowledge integration. [Results] The proposed method calculated the characteristics of knowledge fingerprints in the institutional knowledge base. It organized and visualized knowledge fingerprints, as well as integrated cross-database knowledge through clustering. [Limitations] Due to the differences of database structure and cross-database retrieval methods ( i.e., no public resource API), we did not address all limits of cross-database retrieval. [Conclusions] The proposed method could help institutional knowledge repositories effectively integrate their knowledge resources and improve service capabilities.

Key wordsInstitutional      Repository      Clustering      Algorithm      Knowledge      Integration      Knowledge      FingerprintCross-library      Retrieval      Lingo3G     
Received: 07 September 2020      Published: 27 May 2021
ZTFLH:  G354  
Corresponding Authors: Lu Linong     E-mail:

Cite this article:

Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm. Data Analysis and Knowledge Discovery, 2021, 5(5): 127-132.

URL:     OR

Knowledge Integration and Knowledge Fingerprint Framework
Clustering Algorithm Code
Ling3G Clustering Algorithm Process
Knowledge Service Scenario Configuration
Knowledge Topic Tree Distribution
Knowledge Fingerprint Distribution
[1] 侯莉. 知识管理在图书档案管理中的功能及应用[J]. 兰台内外, 2020(23):10-12.
[1] ( Hou Li. The Function and Application of Knowledge Management in the Management of Books and Archives[J]. Inside and Outside Lantai, 2020(23):10-12.)
[2] 席亚军. 高校图书馆数字资源建设现状及发展趋势研究[J]. 河南图书馆学刊, 2016,36(2):41-43.
[2] ( Xi Yajun. Research on the Status Quo and Development Trend of Digital Resources Construction in Academic Libraries[J]. The Library Journal of Henan, 2016,36(2):41-43.)
[3] 韦卫. 图书馆跨库检索背景下的资源整合与优化[J]. 图书馆学刊, 2019,41(12):86-89, 98.
[3] ( Wei Wei. Resource Integration and Optimization in the Context of Library Cross-database Retrieval[J]. Journal of Library Science, 2019,41(12):86-89, 98.)
[4] 南晓凡. 基于跨库检索的数字图书馆资源整合方式研究[J]. 图书馆学刊, 2016,38(1):116-118.
[4] ( Nan Xiaofan . Research on the Integration of Digital Library Resources Based on Cross-database Retrieval[J]. Journal of Library Science, 2016,38(1):116-118.)
[5] 张浩洋, 周良. 改进的GHSOM算法在民航航空法规知识地图构建中的应用[J]. 计算机科学, 2020,47(S1):429-435.
[5] ( Zhang Haoyang, Zhou Liang. The Application of Improved GHSOM Algorithm in the Construction of Civil Aviation Regulations Knowledge Map[J]. Computer Science, 2020,47(S1):429-435.)
[6] Lingo3G[EB/OL]. [ 2020- 08- 25]. .
[7] 吴志强, 祝忠明, 刘巍, 等. CSpace知识分析与可视化功能扩展研究与实践[J]. 数据分析与知识发现, 2019,3(3):112-119.
[7] ( Wu Zhiqiang, Zhu Zhongming, Liu Wei, et al. Research and Practice on the Extension of Knowledge Analysis and Visualization Function in CSpace[J]. Data Analysis and Knowledge Discovery, 2019,3(3):112-119.)
[8] 王睿, 陈抒, 曾斌. 图书馆信息资源跨库检索技术研究[J]. 情报探索, 2017(10):56-61.
[8] ( Wang Rui, Chen Shu, Zeng Bin. Cross-database Search Technology for Library Information Resource[J]. Information Research, 2017(10):56-61.)
[9] 王洪军, 张玉, 李焱, 等. 基于Web的中文期刊查收查引跨库检索系统研发[J]. 中华医学图书情报杂志, 2016,25(6):24-28.
[9] ( Wang Hongjun, Zhang Yu, Li Yan, et al. Web-based R&D of Cross-database Retrieval System for Papers and Citations Covered in Chinese Journals[J]. Chinese Journal of Medical Library and Information Science, 2016,25(6):24-28.)
[10] 胡诗未, 李晓峰, 徐伟. 基于主题词匹配频数的搜索引擎结果聚类算法[J]. 计算机工程与科学, 2011,33(6):130-132.
[10] ( Hu Shiwei, Li Xiaofeng, Xu Wei. An Algorithm for the Search Results Clustering Based on Topic Words Matching Frequency[J]. Computer Engineering and Science, 2011,33(6):130-132.)
[11] 李亚, 邵引平. 基于LabWindows/CVI的远程接口单元测试系统软件设计[J]. 计算机测量与控制, 2020,28(7):148-152, 157.
[11] ( Li Ya, Shao Yinping. Design of Remote Interface Unit Testing System Software Based on LabWindows/CVI[J]. Computer Measurement and Control, 2020,28(7):148-152, 157.)
[12] 王海东, 陈广山. 机构自建知识库模式研究及其学术资源整合策略[J]. 福建电脑, 2015,31(6):69-70, 85.
[12] ( Wang Haidong, Chen Guangshan. Research on the Self-built Knowledge Base Model and its Academic Resource Integration Strategy[J]. Fujian Computer, 2015,31(6):69-70, 85.)
[1] Meng Zhen,Wang Hao,Yu Wei,Deng Sanhong,Zhang Baolong. Vocal Music Classification Based on Multi-category Feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 59-70.
[2] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[3] Ma Yingxue,Gan Mingxin,Xiao Kejun. A Matrix Factorization Recommendation Method with Tags and Contents[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[4] Shi Xiang,Liu Ping. Extraction and Representation of Domain Knowledge with Semantic Description Model and Knowledge Elements——Case Study of Information Retrieval[J]. 数据分析与知识发现, 2021, 5(4): 123-133.
[5] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[6] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[7] Wang Nan,Li Hairong,Tan Shuru. Predicting of Public Opinion Reversal with Improved SMOTE Algorithm and Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[8] Qiu Yunfei, Guo Lei. Predicting Diabetic Complications with Unbalanced Data[J]. 数据分析与知识发现, 2021, 5(2): 116-128.
[9] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[10] Li Ming, Li Ying, Zhou Qing, Wang Jun. Analyzing Knowledge Demand and Supply of Community Question Answering with TF-PIDF[J]. 数据分析与知识发现, 2021, 5(2): 106-115.
[11] Liu Huan,Zhang Zhixiong,Wang Yufei. A Review on Main Optimization Methods of BERT[J]. 数据分析与知识发现, 2021, 5(1): 3-15.
[12] Zhao Yuxiang,Lian Jingwen. Review of Cultural Heritage Crowdsourcing in the Domain of Digital Humanities[J]. 数据分析与知识发现, 2021, 5(1): 36-55.
[13] Yu Fengchang,Cheng Qikai,Lu Wei. Locating Academic Literature Figures and Tables with Geometric Object Clustering[J]. 数据分析与知识发现, 2021, 5(1): 140-149.
[14] Wen Pingmei,Ye Zhiwei,Ding Wenjian,Liu Ying,Xu Jian. Developments of Named Entity Disambiguation[J]. 数据分析与知识发现, 2020, 4(9): 15-25.
[15] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938