Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (2): 43-49    DOI: 10.11925/infotech.2096-3467.2020.1059
Current Issue | Archive | Adv Search |
Grouping Microblog Users of Trending Topics Based on Sentiment Analysis
Zhang Mengyao,Zhu Guangli(),Zhang Shunxiang,Zhang Biao
Computer Science and Engineering, Anhui University of Science & technology, Huainan 232001, China
Download: PDF (722 KB)   HTML ( 15
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] The paper proposes a model to group users of Weibo trending topics. [Methods] First, we computed the sentiment of user’s texts with sentiment dictionary. Then, we combined sentiment and text vector expression to determine the characteristics of user opinion. Finally, we grouped similar users with the K-means method. [Results] The proposed model divided users into three categories, and the value of evaluation index (CA) reached 78.2%. [Limitations] Our model needs to define the number of categories before dividing user groups. [Conclusions] The proposed model could effectively group users with the same sentimental views.

Key wordsMicroblog      Sentiment Analysis      Dictionary      Clustering      User Group Classification     
Received: 28 October 2020      Published: 15 December 2020
ZTFLH:  TP393  
Fund:National Natural Science Foundation of China(62076006);Anhui Provincial Natural Science Foundation(1908085MF189)
Corresponding Authors: Zhu Guangli ORCID:0000-0003-4364-866X     E-mail: glzhu@aust.edu.cn

Cite this article:

Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis. Data Analysis and Knowledge Discovery, 2021, 5(2): 43-49.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2020.1059     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2021/V5/I2/43

The Framework of Classification Model
词语 词频 词语 词频
李某 461 希望 102
贾某 328 举报 96
出轨 299 喜欢 94
离婚 288 网页 93
251 心疼 88
孩子 246 明星 84
恭喜 189 终于 81
某馨 188 评论 69
视频 167 家庭 68
哈哈哈 123 可怜 65
女人 117 好好 65
106 可惜 59
Some Characteristic Words and Word Frequency
用户 观点情感特征
Since-孟孟孟子 0 0 0 0 0 0 0 0 0 0 0 4.77 0 0 0 5.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
类阿类- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
殷进媳妇儿 0 0 0 0 0 0 0 0 0 0 0 0 5.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3.94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
柑g子 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
勋鹿家的小仙女 0 0 0 0 0 0 0 0 0 0 0 4.77 0 0 0 5.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
阿桐baby 0 0 0 0 0 0 0 0 0 0 0 9.54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
水瓶座佳佳大本营 0 0 0 0 0 0 0 0 0 0 0 3.18 0 0 0 3.98 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Partial Sentiment Characteristics
编号 用户序号 用户 评论
1 3 一个平凡人的吃瓜专用微博 既然不爱,分开吧,搞得鸡飞狗跳,看着都累。希望某馨健康成长。
6 8 起名太难不会改 各自安好吧,婚姻如饮水冷暖自知,作为局外人,没法说真的谁对谁错,好好对某馨,我喜欢你的女儿
13 15 就叫阿馨呀 好好对待孩子,别让孩子扯入大人的恩怨纠纷
137 139 傻fufu猪猪 你是真的绿茶,心痛亮哥和某馨
315 317 做不了你的洛璃但想见你 心疼亮哥和某馨
405 407 蓝忘机0818 主要还是心疼某馨和贾某
431 433 foxfoxy琳 心疼孩子
439 441 梦509 心疼某馨
609 611 如何为了自己奋斗一次 尊重对方,给孩子一个健康成长的环境。大人的错误不该让孩子来买单。
738 740 shan-yolo 某馨真可怜
1 121 1 123 长宁2004 就没有想过孩子吗
Some Second Category Users and Their Comments
编号 用户序号 用户 评论
18 20 Since-孟孟孟子 恭喜亮哥
39 41 勋鹿家的小仙女 恭喜亮哥
43 45 阿桐baby 恭喜
49 51 水瓶座佳佳大本营 恭喜亮哥脱离苦海
108 110 Rsskcs 恭喜亮哥
134 136 Sai平安喜乐 恭喜亮哥脱离苦海
162 164 再无感100 恭喜亮哥脱离苦海
170 172 小赞哥呀 恭喜贾某脱离苦海 喜得重生
172 174 H魔法师阿狸H 恭喜亮亮脱离苦海
191 193 禹棹奂女朋友 终于发声明了 恭喜亮哥
205 207 乱花渐欲迷人眼520 恭喜亮哥喜得单身
Some Third Category Users and Their Comments
[1] Giatsoglou M, Vozalis M G, Diamantaras K, et al. Sentiment Analysis Leveraging Emotions and Word Embeddings[J]. Expert Systems with Applications, 2017,69:214-224.
doi: 10.1016/j.eswa.2016.10.043
[2] Islam M Z, Liu J, Li J, et al. A Semantics Aware Random Forest for Text Classification[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, China. 2019: 1061-1071.
[3] Wu F Z, Huang Y F, Song Y Q, et al. Towards Building a High-Quality Microblog-Specific Chinese Sentiment Lexicon[J]. Decision Support Systems, 2016,87:39-49.
doi: 10.1016/j.dss.2016.04.007
[4] Tubishat M, Idris N, Abushariah M A M. Implicit Aspect Extraction in Sentiment Analysis: Review, Taxonomy, Opportunities, and Open Challenges[J]. Information Processing & Management, 2018,54(4):545-563.
doi: 10.1016/j.ipm.2018.03.008
[5] Ikram M T, Afzal M T. Aspect Based Citation Sentiment Analysis Using Linguistic Patterns for Better Comprehension of Scientific Knowledge[J]. Scientometrics, 2019,119(1):73-95.
doi: 10.1007/s11192-019-03028-9
[6] 吕光瑞, 蔡国永, 林煜明. 基于多模态判别性嵌入空间的图像情感分析[J]. 北京邮电大学学报, 2019,42(1):61-67.
[6] ( Lü Guangrui, Cai Guoyong, Lin Yuming. Image Sentiment Analysis with Multimodal Discriminative Embedding Space[J]. Journal of Beijing University of Posts and Telecommunications, 2019,42(1):61-77.)
[7] Katsurai M, Satoh S. Image Sentiment Analysis Using Latent Correlations Among Visual, Textual, and Sentiment Views[C]//Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China. 2016: 2837-2841.
[8] Neumann M, Vu T. Cross-lingual and Multilingual Speech Emotion Recognition on English and French[C]//Proceedings of the 2018 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Canada. 2018: 5769-5773.
[9] Siegert I, Requardt A, Egorow O, et al. Improving Speech-Based Emotion Recognition by Using Psychoacoustic Modeling and Analysis-by-Synthesis[C]//Proceedings of the 2017 International Conference on Speech and Computer (SPECOM), Hatfield, UK. 2017: 445-455.
[10] Rathi M, Malik A, Varshney D, et al. Sentiment Analysis of Tweets Using Machine Learning Approach[C]//Proceedings of the 11th International Conference on Contemporary Computing, Nodia, India. 2018: 1-3.
[11] Huang Z, Zhao Z, Liu Q, et al. An Unsupervised Method for Short-Text Sentiment Analysis Based on Analysis of Massive Data[C]//Proceedings of the 2015 International Conference of Young Computer Scientists, Engineers and Educators (ICYCSEE), Harbin, China. 2015: 169-176.
[12] Park S, Kim Y. Building Thesaurus Lexicon Using Dictionary-Based Approach for Sentiment Classification[C]//Proceedings of the 2016 IEEE 14th International Conference on Software Engineering Research, Towson, MD, USA. 2016: 39-44.
[13] Rao Y, Lei J, Liu W Y, et al. Building Emotional Dictionary for Sentiment Analysis of Online News[J]. World Wide Web, 2014,17(4):723-742.
doi: 10.1007/s11280-013-0221-9
[14] Li W, Guo K, Shi Y, et al. Improved New Word Detection Method Used in Tourism Field[J]. Procedia Computer Science, 2017,108:1251-1260.
doi: 10.1016/j.procs.2017.05.022
[15] Yan L W, Bai B, Chen W, et al. New Word Extraction from Chinese Financial Documents[J]. IEEE Signal Processing Letters, 2017,24(6):770-773.
doi: 10.1109/LSP.97
[16] 张仰森, 郑佳, 黄改娟, 等. 基于双重注意力模型的微博情感分析方法[J]. 清华大学学报(自然科学版), 2018,58(2):122-130.
[16] ( Zhang Yangsen, Zheng Jia, Huang Gaijuan, et al. Microblog Sentiment Analysis Method Based on a Double Attention Model[J]. Journal of Tsinghua University (Science and Technology), 2018,58(2):122-130.)
[17] Zhang S X, Wang Y, Zhang S Y, et al. Building Associated Semantic Representation Model for the Ultra-Short Microblog Text Jumping in Big Data[J]. Cluster Computing, 2016,19(3):1399-1410.
doi: 10.1007/s10586-016-0602-9
[18] Santos I, Nedjah N, Mourelle L D M. Sentiment Analysis Using Convolutional Neural Network with FastText Embeddings[C]//Proceedings of the 2017 IEEE Latin American Conference on Computational Intelligence (LA-CCI), Arequipa, Peru. 2017: 1-5.
[19] Chen T, Xu R, He Y, et al. Improving Sentiment Analysis via Sentence Type Classification Using BILSTM-CRF and CNN[J]. Expert Systems with Applications, 2017,72:221-230.
doi: 10.1016/j.eswa.2016.10.065
[20] 朱晓霞, 宋嘉欣, 孟建芳. 基于动态主题—情感演化模型的网络舆情信息分析[J]. 情报科学, 2019,37(7):72-78.
[20] ( Zhu Xiaoxia, Song Jiaxin, Meng Jianfang. Analysis of Online Public Opinion Information Based on the Dynamic Theme-Emotion Evolution Model[J]. Information Science, 2019,37(7):72-78.)
[21] Zhang X, Li C. The Research of Sentiment Analysis of Microblog Based on Data Mining: Exampled by Basic Endowment Insurance[C]//Proceedings of the 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xiamen, China. 2017: 1-5.
[22] Zucco C, Calabrese B, Cannataro M. Sentiment Analysis and Affective Computing for Depression Monitoring[C]//Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Kansas City, USA. 2017: 1988-1995.
[23] Tago K, Jin Q. Influence Analysis of Emotional Behaviors and User Relationships Based on Twitter Data[J]. Tsinghua Science and Technology, 2018,23(1):104-113.
doi: 10.26599/TST.2018.9010012
[24] Gao K, Xu H, Wang J. A Rule-Based Approach to Emotion Cause Detection for Chinese Micro-Blogs[J]. Expert Systems with Applications, 2015,42(9):4517-4528.
doi: 10.1016/j.eswa.2015.01.064
[25] Naskar D, Singh S R, Kumar D, et al. Emotion Dynamics of Public Opinions on Twitter[J]. ACM Transactions on Information Systems, 2020, 38(2): Article No.18.
[26] 彭希羡, 朱庆华, 刘璇. 微博客用户特征分析及分类研究——以“新浪微博”为例[J]. 情报科学, 2015,33(1):69-75.
[26] ( Peng Xixian, Zhu Qinghua, Liu Xuan. Research on Behavior Characteristics and Classification of Micro-blog Users——Taking “Sina Micro-blog” as an Example[J]. Information Science, 2015,33(1):69-75.)
[1] Yu Fengchang,Cheng Qikai,Lu Wei. Locating Academic Literature Figures and Tables with Geometric Object Clustering[J]. 数据分析与知识发现, 2021, 5(1): 140-149.
[2] Lv Huakui,Liu Zhenghao,Qian Yuxing,Hong Xudong. Relationship Between Financial News and Stock Market Fluctuations[J]. 数据分析与知识发现, 2021, 5(1): 99-111.
[3] Wen Pingmei,Ye Zhiwei,Ding Wenjian,Liu Ying,Xu Jian. Developments of Named Entity Disambiguation[J]. 数据分析与知识发现, 2020, 4(9): 15-25.
[4] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[5] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[6] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[7] Jiang Lin,Zhang Qilin. Research on Academic Evaluation Based on Fine-Grain Citation Sentimental Quantification[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[8] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[9] Yang Xu,Qian Xiaodong. Synchronous Clustering Algorithm for Social Networks Based on Improved Vicsek Model[J]. 数据分析与知识发现, 2020, 4(4): 119-128.
[10] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[11] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[12] Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133.
[13] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[14] Xue Fuliang,Liu Lifang. Fine-Grained Sentiment Analysis with CRF and ATAE-LSTM[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[15] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn