Please wait a minute...
Data Analysis and Knowledge Discovery  2021, Vol. 5 Issue (4): 72-79    DOI: 10.11925/infotech.2096-3467.2020.1083
Current Issue | Archive | Adv Search |
Sentiment Analysis with Reviewer Types and Generative Adversarial Network
Li Feifei1,Wu Fan2,Wang Zhongqing2()
1Library of Soochow University, Suzhou 215006, China
2School of Computer Science and Technology, Soochow University, Suzhou 215006, China
Download: PDF (800 KB)   HTML ( 8
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper analyzes online comments by professional critics and average audience, aiming to improve the sentiment classification of reviews. [Methods] First, we introduced the professional backgrounds of contributors to examine the emotional polarity of reviews. Then, we used the generative adversarial network to decide whether the contributor was a professional critic or an average browser. Finally, we identified their differences to further improve the accuracy of emotion classification. [Results] The accuracy rate of the proposed model reached 83.6%, which was 5.6% higher than the benchmark model LSTM and 4.4% higher than BiLSTM. [Limitations] We only studied movie reviews, and more research is needed to evaluate our model with data sets from other fields. [Conclusions] The proposed GJOINT model can effectively improve the results of sentiment classification of online reviews.

Key wordsSentiment Analysis      Generative Adversarial Network      Review Professionalism      LSTM     
Received: 02 November 2020      Published: 17 May 2021
ZTFLH:  分类号: TP391  
Fund:National Natural Science Foundation of China(61806137);National Natural Science Foundation of China(61702351)
Corresponding Authors: Wang Zhongqing     E-mail: wangzq@suda.edu.cn

Cite this article:

Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network. Data Analysis and Knowledge Discovery, 2021, 5(4): 72-79.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2020.1083     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2021/V5/I4/72

序号 评论实例
[E1] Funny and charming, it’s a very good movie. (既有趣又迷人,是一部很好的电影。)
[E2] This version of Black Panther weaves a seemingly disparate set of strands together rather seamlessly, presenting more than enough comic book acrobatics and mayhem to satisfy the core fan base while also speaking a necessary degree of truth to power. (这个版本的黑豹把一组看似不同的线编织在一起,展现了足够多的漫画书,杂技和混乱,以满足核心粉丝群,同时也展示了必要的真实性。)
Comment examples
The JOINT Model
The GJOINT Model
实验模型 实验一准确率 实验二准确率
A C A C
SingleCategory 0.678 0.734 0.768 0.802
CrossCategory 0.648 0.623 0.746 0.706
MultiCategory 0.712 0.685 0.782 0.816
The Results of Review Sentiment Analysis with Different Professional Type
模型名称 实验一准确率 实验二准确率
LSTM 0.687 0.780
BiLSTM 0.672 0.792
JOINT 0.703 0.806
GJOINT 0.716 0.836
Performance Comparison of Sentiment Analysis
评论内容 LSTM GJOINT
[E3] The most courageous thing about it, from today’s standards, is that it closes without an obligatory happy ending, and an audience that has watched for 187 minutes doesn’t get a tidy, mindless conclusion.
(从今天的标准来看,它最有勇气的一点是结束时没有一个必然的快乐结局,一个观看了187分钟的观众不会得到一个整洁、愚蠢的结论。)
Negative Positive
[E4] boring old hollywood style epic with that canned elevator music. still it was the best of its kind.
(无聊的老好莱坞风格史诗与罐装电梯音乐。尽管如此,它还是同类型中最好的。)
Negative Positive
Examples of Effectiveness Assessment by GJOINT
[1] Wen X Z, Shao L, Xue Y, et al. A Rapid Learning Algorithm for Vehicle Classification[J]. Information Sciences, 2015,295(C):395-406.
doi: 10.1016/j.ins.2014.10.040
[2] Chen B J, Shu H Z, Coatrieux G, et al. Color Image Analysis by Quaternion-Type Moments[J]. Journal of Mathematical Imaging and Vision, 2015,51(1):124-144.
doi: 10.1007/s10851-014-0511-6
[3] Gu B, Sheng V S, Wang Z J, et al. Incremental Learning for ν-Support Vector Regression[J]. Neural Networks, 2015,67:140-150.
doi: 10.1016/j.neunet.2015.03.013
[4] 李慧, 柴亚青. 基于卷积神经网络的细粒度情感分析方法[J]. 数据分析与知识发现, 2019,3(1):95-103.
[4] ( Li Hui, Chai Yaqing. Fine-Grained Sentiment Analysis Based on Convolutional Neural Network[J]. Data Analysis and Knowledge Discovery, 2019,3(1):95-103.)
[5] Tang D Y, Qin B, Liu T. Document Modeling with Gated Recurrent Neural Network for Sentiment Classification[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. 2015: 1422-1432.
[6] Wang S D, Manning C D. Baselines and Bigrams: Simple, Good Sentiment and Topic Classification[C]// Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. 2012: 90-94.
[7] Song G, Ye Y M, Du X L, et al. Short Text Classification: A Survey[J]. Journal of Multimedia, 2014,9(5):635-643.
[8] 曾子明, 杨倩雯. 基于LDA和AdaBoost多特征组合的微博情感分析[J]. 数据分析与知识发现, 2018,2(8):51-59.
[8] ( Zeng Ziming, Yang Qianwen. Sentiment Analysis for Micro-blogs with LDA and AdaBoost[J]. Data Analysis and Knowledge Discovery, 2018,2(8):51-59.)
[9] Hu F, Li L, Zhang Z L, et al. Emphasizing Essential Words for Sentiment Classification Based on Recurrent Neural Networks[J]. Journal of Computer Science and Technology, 2017,32(4):785-795.
doi: 10.1007/s11390-017-1759-2
[10] 赵妍妍, 秦兵, 刘挺. 文本情感分析[J]. 软件学报, 2010,21(8):1834-1848.
[10] ( Zhao Yanyan, Qin Bing, Liu Ting. Sentiment Analysis[J]. Journal of Software, 2010,21(8):1834-1848.)
[11] Tai K S, Socher R, Manning C D. Improved Semantic Representations from Tree-Structured Long Short-Term Memory Networks[OL]. arXiv Preprint, arXiv:1503.00075v2.
[12] 吴鹏, 应杨, 沈思. 基于双向长短期记忆模型的网民负面情感分类研究[J]. 情报学报, 2018,37(8):845-853.
[12] ( Wu Peng, Ying Yang, Shen Si. Negative Emotions of Online Users’ Analysis Based on Bidirectional Long Short-Term Memory[J]. Journal of the China Society for Scientific and Technical Information, 2018,37(8):845-853.)
[13] Li X, Bing L D, Lam W, et al. Transformation Networks for Target-Oriented Sentiment Classification[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. 2018: 946-956.
[14] 卢强, 朱振方, 徐富永, 等. 融合语法规则的Bi-LSTM中文情感分类方法研究[J]. 数据分析与知识发现, 2019,3(11):99-107.
[14] ( Lu Qiang, Zhu Zhenfang, Xu Fuyong, et al. Chinese Sentiment Classification Method with Bi-LSTM and Grammar Rules[J]. Data Analysis and Knowledge Discovery, 2019,3(11):99-107.)
[15] Hovy D. Demographic Factors Improve Classification Performance[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference of the Asian Federation of Natural Language Processing. 2015: 752-762.
[16] Vosoughi S, Zhou H, Roy D, et al. Enhanced Twitter Sentiment Classification Using Contextual Information[C]// Proceedings of the 6th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis. 2015: 16-24.
[17] 赵冬梅, 李雅, 陶建华, 等. 基于协同过滤Attention机制的情感分析模型[J]. 中文信息学报, 2018,32(8):128-134.
[17] ( Zhao Dongmei, Li Ya, Tao Jianhua, et al. Sentiment Analysis Based on Collaborative Filter Attention Mechanism[J]. Journal of Chinese Information Processing, 2018,32(8):128-134.)
[18] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997,9(8):1735-1780.
pmid: 9377276
[19] Wang K, Wan X J. SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 4446-4452.
[20] William F, Ian G, Andrew M D, et al. MaskGAN: Better Text Generation via Filling in the[C]// Proceedings of the 6th International Conference on Learning Representations. 2018: 1-17.
[1] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[2] Hu Haotian,Ji Jinfeng,Wang Dongbo,Deng Sanhong. An Integrated Platform for Food Safety Incident Entities Based on Deep Learning[J]. 数据分析与知识发现, 2021, 5(3): 12-24.
[3] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[4] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[5] Jiang Cuiqing,Wang Xiangxiang,Wang Zhao. Forecasting Car Sales Based on Consumer Attention[J]. 数据分析与知识发现, 2021, 5(1): 128-139.
[6] Lv Huakui,Liu Zhenghao,Qian Yuxing,Hong Xudong. Relationship Between Financial News and Stock Market Fluctuations[J]. 数据分析与知识发现, 2021, 5(1): 99-111.
[7] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[8] Jiang Lin,Zhang Qilin. Research on Academic Evaluation Based on Fine-Grain Citation Sentimental Quantification[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[9] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[10] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[11] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[12] Xue Fuliang,Liu Lifang. Fine-Grained Sentiment Analysis with CRF and ATAE-LSTM[J]. 数据分析与知识发现, 2020, 4(2/3): 207-213.
[13] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[14] Zhang Yipeng,Ma Jingdong. Analyzing Sentiments and Dissemination of Misinformation on Public Health Emergency[J]. 数据分析与知识发现, 2020, 4(12): 45-54.
[15] Yan Jinghua,Hou Miaomiao. Predicting Time Series of Theft Crimes Based on LSTM Network[J]. 数据分析与知识发现, 2020, 4(11): 84-91.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn